Name:	Student ID # :	Instructor:	
คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์			
การสอบปลายภาค ประจำภาคการศึกษาที่ วันพุธที่ 11 ตุลาคม พ.ศ. 2549 วิชา 215-324 : กลศาสตร์เครื่องจักรกล		ประจำปีการศึกษา 2549 เวลา 9.00-12.00 น. ห้องสอบ A401	

ทุจริตในการสอบ ปรับขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

<u>คำสั่ง</u>

- 1. ข้อสอบมีทั้งหมด 5 ข้อ ให้ทำลงในข้อสอบทุกข้อ และทุกข้อมี 20 คะแนนเท่ากัน
- 2. อนุญาตให้ใช้เครื่องคิดเลขได้
- 3. ให้ใช้เครื่องมือเขียนแบบได้
- 4. อนุญาตให้นำกระดาษขนาด A4 จำนวน 1 แผ่นเข้าห้องสอบได้ แต่ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร อ.ประกิต หงษ์หิรัญเรื่อง ผู้ออกข้อสอบ

ข้อ	คะแนน	
1		
2		
3		
4		
5		
รวม		

Name:	_ Student ID # :	Instructor:
-------	------------------	-------------

1) 1.1) What is the type of each cam?

(a)_____

(c)

(d)_____

Use the following pictures to give all correct answers to questions 1.2) – 1.5)

1.2) Which cam has translating follower?

1.3) Which one is oscillating follower?

1.4) Which cam and follower has sliding contact?

1.5) All the cams above are (form closed / force-closed)

1.6) All the cams above are (form closed / force-closed)

3 T	Student ID # :	Instructor
Name:	Student 10 # :	Instructor:

1.7) Name the type of the following gears.

Name : ______ Student ID # : _____ Instructor : _____

2) The differential gear system shown with the number of teeth on each gear as $N_A = 36$, $N_{A'} = N_{B'} = N_C = 18$, $N_B = 36$, $N_D = 30$.

- (a) If $\omega_D = 0$ rpm, and $\omega_A = 20$ rpm cw, determine ω_B and its direction.
- (b) If $\omega_D = 10$ rpm cw, and $\omega_A = 30$ rpm cw, determine ω_B and its direction.

Name : ______ Student ID # : _____ Instructor : _____

3) The mechanism is in static equilibrium at this position, with $P_D = 40$ N acting at point D on link 4 as shown. Use graphical method to determine the magnitude and direction of the vertical load P_B acting at point B on link 3. Also draw force vectors on the given free body diagrams of each link. The dimensions are given as $R_{AO2} = 20$ mm, $R_{AB} = 50$ mm, $R_{AC} = 50$ mm, $R_{BC} = 20$ mm, $R_{O2O4} = 40$ mm, $R_{CO4} = 40$ mm, $R_{DO4} = 30$ mm, $R_{DC} = 20$ mm.

Name :	Student ID #:	Instructor:
_ ,,,,,		

4) Link AB is 0.80 m long with its C.G. at point G, 0.30 m from end A. The mass of the link is m=2 kg, and moment of inertia about C.G., $I_G=4$ kg-m². Force F_A of unknown magnitude is applied vertically at end A, and force F_B of unknown magnitude and direction is applied at end B. The link has an acceleration of point G, $a_G=10$ m/s² to the right, and an angular acceleration, $\alpha=1.2$ rad/s² clockwise. Use graphical method to determine F_A and F_B . Assume that the gravity is perpendicular to the plane of paper.

	Name:	·	Student ID #:		Instructor:	
--	-------	---	---------------	--	-------------	--

5) Weights of 1 kg, 2 kg, and 1.5 kg are located at radii 0.5 m, 0.8 m, and 0.3 m in the planes C, D, and E, respectively, on a shaft supported at the bearings B and F, as shown. Find the weights and angular locations of the two balancing weights to be placed in the end planes A and G so that the dynamic load on the bearings will be zero.

