มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

การสอบปลายภาค ประจำภาคการศึกษาที่ 1 วันที่ 5 ตุลาคม 2549

ประจำปีการศึกษา 2549

เวลา 09.00-12.00 น.

ห้อง R 300

วิชา 215-391 Fundamental of Mechanical Engineering

คำสั่ง

- 1. ข้อสอบมี 2 ตอน
 - ตอน A Heat Transfer
 - ตอน B Mechanism
- 2. ห้ามน้ำตำราและเอกสารทุกชนิดเข้าห้องสอบ
- 3. อนุญาตให้นำเครื่องคิดเลขเข้าห้องสอบได้

ชื่อ-สกุล	รหัส

เฉพาะผู้ออกข้อสอบ	
1	
2	
3	
4	
รวม	

รศ.คร.ชูเกียรติ คุปตานนท์ อ.สมบูรณ์ วรวุฒิคุณชัย ผู้ออกข้อสอบ

ชื่อ-สกุลรหัสรหัส
1) The walls of a refrigerator for a shop consist of slag wool 0.1522 m thick sandwiched between
sheet iron, 0.0794 cm thick, on one side and asbestos board, 0.963 cm thick, on the other. The
total surface effective for heat transfer is 37.2 m ² . The atmospheric temperature is 18.3°C and the
temperature in the cold room is -3.9° C.
The thermal conductivity of iron, slag wool, and asbestos board may be taken as 69.1,
0.346 and 1.21 respectively and the surface heat transfer coefficient as 1.705 : all in J s m°C,
units.
Compute the heat leakage into the refrigerator.
•••••••••••••••••••••••••••••••••••••••

ชื่อ-สกุล	รหัส
2)	
A grape of 1 cm. diameter, initially at a	uniform temperature of 20°C, is placed in a
refrigerator in which the air temperature is 5°C.	If the heat transfer coefficient between the air
and the grape is 20 W/m ² °C.	
Determine the time required for the grape to rea	sch 10° C. [for grape, k = 0.6 W/m°C, ρ = 1100
kg/m^{3} , and $C_{p} = 4200 \text{ J/kg}^{\circ}\text{C}$	
······································	

	หัส	
3) A double-pipe heat exchanger with a counter flow arrangement	ent is utilized to heat water	
with a mass flowrate of 10 kg/s from 15°C to 33°C. The l	heating fluid enters at 75°C	
with a capacity rate of 25 kW/°C and the mean overall coeffic	ient of heat transfer is 1570	
W/m ² C.		
Determine;		
(i) The mean temperature difference between water a	and heating fluid,	
(ii) The necessary surface area operation, and(iii) The effectiveness of the heat exchanger.		
Or on that the specific heat of water is 1.15 kg/kg of		
	••••••	
	•••••••••••	
••••••••••••••••••••••••••••••••	•••••	
	•••••••	
	•••••	
ชื่อ-สกุล	รหัส	
·		
4) กลไก (linkage) คังแสดงในรูป (1) มี link 2 หมุนด้วยความเร็วคง	ที่เท่ากับ 20 rad/s ให้	
(i) เขียนรูป linkage นี้ใหม่ตามมาตราส่วน 1:4	(2 คะแนน)	
(ii) แสดงตำแหน่ง velocity poles ของ linkage	(6 คะแนน)	
(iii) หาค่าความเร็วของจุด B (v _B)	(4 คะแนน)	

(iv) หาค่าความเร็วเชิงมุมของ link 3 (ω_3) และ link 4 (ω_4) (4 คะแนน)

ชื่อ-สกุล..... รหัส...... รหัส......

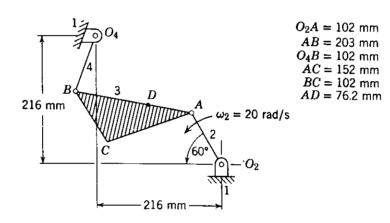
4) กลไก (linkage) คังแสดงในรูป (1) มี link 2 หมุนด้วยความเร็วคงที่เท่ากับ 20 rad/s ให้

- (i) เขียนรูป linkage นี้ใหม่ตามมาตราส่วน 1:4
- (2 คะแนน)

(ii) แสดงตำแหน่ง velocity poles ของ linkage

(6 คะแนน)

(iii) หาค่าความเร็วของจุด B $(v_{\rm B})$


- (4 คะแนน)
- (iv) หาค่าความเร็วเชิงมุมของ link 3 (ω_3) และ link 4 (ω_4)
- (4 คะแนน)

(v) หาค่าความเร่งของจุด B (a_B)

(6 คะแนน)

(vi) หาความเร่งเชิงมุม ($lpha_{\scriptscriptstyle 4}$) ของ link 4

(2 คะแนน)

