

Prince of Songkla University Faculty of Engineering

Final Test	
7 October 2006	
215-613 Mathematical Methods	in Engineering

Semester 1/2548 13:30 – 16:30 Room R300

Name	 	

Direction:

- 1. Open book exam.
- 2. There are total of 3 problems.

Problem	Full score	Your score
1	20	
2	15	
3	10	
Total	45	

Perapong Tekasakul Instructor

215-613 Mathematical Methods in Engineering

Final Test Semester 1/2549 **Total 45 points**

1. The 1-D heat conduction in a 1-m long iron rod can be described by

$$\frac{\partial T}{\partial t} = c^2 \frac{\partial^2 T}{\partial x^2}$$

where $c^2 = 0.5 \text{ m}^2/\text{sec}$. The boundary conditions are

$$\frac{\partial T}{\partial x}\Big|_{x=0} = 0 \quad \frac{^{\circ}C}{m}$$
$$T(1,t) = 100 \,^{\circ}C$$

and the initial temperature profile is $T(x,0) = 100x^2$.

Draw the initial temperature profile and determine the temperature profile in the rod at any time t. (20 points)

2. The 1-D heat conduction in a semi-infinite bar has the following conditions:

$$\frac{\partial T}{\partial x}\Big|_{x=0} = 0 \quad \frac{^{\circ}C}{m}$$

$$T(x,0) = \begin{cases} 100\cos x \quad ^{\circ}C, & 0 < x \le \pi/2 \\ 0 \quad ^{\circ}C, & x > \pi/2 \end{cases}$$

Determine the temperature profile in the rod at any time t. Do as much as you can. (15 points)

3. Following is a system of four linear equations with only three unknowns. Does this system have a unique solution? If you think the solution exists, solve it by Gaussian Elimination. (10 points)

$$-w + x + 2y - 2z = 10$$

$$w - 2x - 2y + 3z = -6$$

$$-2w + 5x + y + 2z = -1$$

$$5w - 4x + 10y - 6z = 12$$

2