มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

สอบทิลาจภาค ประจำภาคการศึกษา 2 วันที่ 20 ธันวาคม 2549

วิชา CE 220-504: Introduction to Finite Element Method

ปีการศึกษา 2549 เวลา 13.30 — 16.30. ห้องสอบ A 203

อ-สกุ	ล	 	•		٠.		 			•	 	 	•	•	•	•	•	•	•	•	 •	•	•	•	•	 		•	•	•	•	•	•	•	•	•	•	•
หัส		 		. ,			 				 																											

คำที่แจง

- 1.ข้อสอบทั้งหมดมี 4 ข้อ คะแนนรวม 100 คะแนน ดังแสดงในตารางข้างล่าง
- 2. ซ้อสอบมีทั้งหมด 4 หน้า (รวมปก) ผู้สอบต้องตรวจสอบว่ามีครบทุกหน้าหรือไม่ (ก่อนลงมือทำ)
- 3.ให้ทำหมดทุกข้อลงในสมุดคำตอบ
- 4.อนุญาตให้ใช้เครื่องคิดเลขได้ทุกชนิด
- 5.ห้ามหยิบ หรือยืมสิ่งของใดๆ ของผู้อื่นในห้องสอบ
- 6. Open Books
- 7. GOOD LUCK

ตารางคะแนน

ข้อที่	คะแนนเต็ม	ได้
1	30	
2	30	
3	20	
4	20	
รวม	100	

Problem 1 (30 Points)

Consider a boundary value problem:

$$\frac{d^2\phi}{dx^2} - \phi = 0 \qquad , \qquad 0 < x < 1$$

$$\phi(0) = 0$$

$$\frac{d\phi(1)}{dx} = 10$$

Let $\phi = \hat{\phi} = \sum_{m=1}^{M} a_m N_m$ where a set N_m is selected such that the condition at x = 0 is automatically satisfied.

- (a) Write the weighted residual statement of this problem. (5 points)
- (b) If $N_m = x^m (m = 1, 2, ..., M)$, use the appropriate weighting function W_l (l=1,2,...,M) to obtain $\hat{\phi}(x)$ when

$$-W_{l}=\delta(x-x_{l})$$

- $W_i = \delta(x - x_i)$; point collocation

-
$$W_i = N_i$$

- $W_i = N_i$; weak form of Galerkin's equation

Use M = 5. (20 points)

(c) Solve this differential equation analytically. (5 points)

Problem 2 (30 Points)

Consider a thin beam element with the governing equation and boundary equations being as shown below

$$V_{1}, w_{1}$$

$$V_{2}, w_{2}$$

$$EI \frac{d^{3}w}{dx^{3}} = V_{1}, x = 0$$

$$-EI \frac{d^{2}w}{dx^{2}} = M_{1}, x = 0$$

$$-EI \frac{d^{3}w}{dx^{2}} = V_{2}, x = L$$

$$EI\frac{d^4w}{dx^4} = 0, 0 < x < L$$

$$EI\frac{d^3w}{dx^3} = V_1, x = 0$$

$$-EI\frac{d^2w}{dx^2} = M_1, x = 0$$

$$-EI\frac{d^3w}{dx^3} = V_2, x = L$$

$$EI\frac{d^2w}{dx^2} = M_2, x = L$$

(a) Derive the total potential energy of this beam. Then, from the variational principle, formulate the stiffness matrix **K** and the force vector **F** corresponding to $\{w_1 \ \theta_1 \ w_2 \ \theta_2\}$ where $\theta = \frac{dw}{dx}$. (10 points)

- (b) Show that we can obtain the matrices K and F by using the weak form of Galerkin's equation which are identical to the ones in (a). (15 points)
- (c) Show that the operator $\frac{d^4(.)}{dx^4}$ is self-adjointed. (5 points)

Problem 3 (20 Points)

Axial Deformation of A Bar

The governing differential equation is of the form:

$$-\frac{d}{dx} \left[EA \frac{du}{dx} \right] = 0; 0 < x < L$$

For the minimum number of linear elements, give

- (a) the boundary conditions on the nodal variables (primary as well as secondary variables)
- (b) the final condensed finite element equations for the unknowns.

Problem 4 (20 Points)

Construct the shape functions of the 6-node triangular element (x,y co-ordinate). Show intermediate steps of calculation.

