PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Mid-term Examination: Semester 2

Academic Year: 2006

Date: December 19, 2006

Time: 13:30-16:30

Subject: 226-305 Machine Design

Room: R200

Instructions

Books, sheets of paper note are allowed.

- Dictionary and calculator are allowed.
- There are 4 problems in 10 pages.
- Answer all problems in these sheets.
- Total score is 100.
- Your answers could be in English or Thai.
- Please check all questions before start working.

Problem	Full Score	Assigned Score
1	25	
2	25	
3	25	
4	25	
Total	100	

Mr.Srisit Chianrabutra

ทุจริตในการสอบโทษขั้นต่ำ คือ พักการเรียน 1 ภาคการศึกษา และปรับตกในรายวิชา

Problem 1: Explain 5 figures from given 6 figures, must be extended from handout. (25 points; General Understanding) Cam Spring Figure 1: For problem 1 Valve Steel - Plastic Ceramic Aluminum Figure 2: For problem 1 Plastic Elastic ϵ

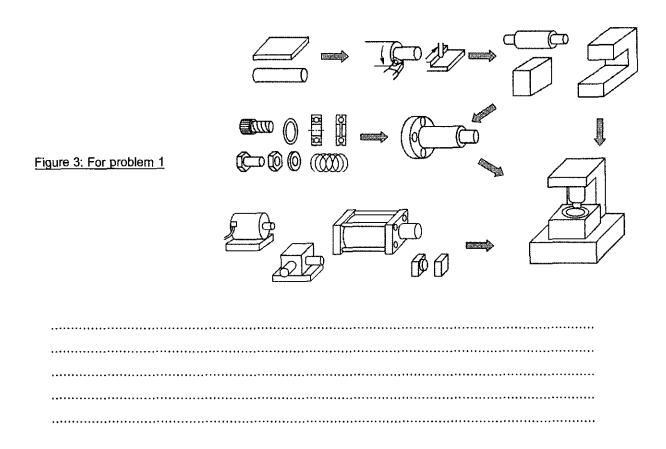
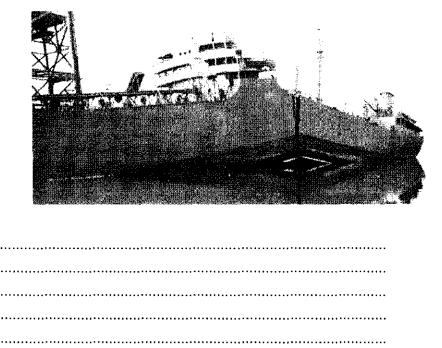



Figure 4: For problem 1

Student	ID	
	· — • • • • • • • • • • • • • • • • • • •	

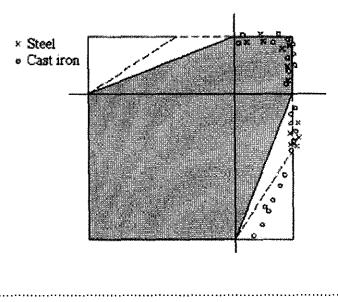
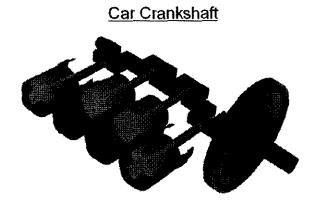
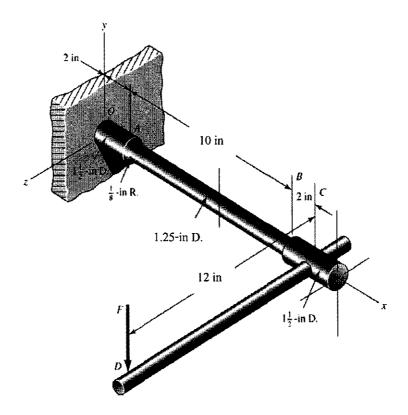



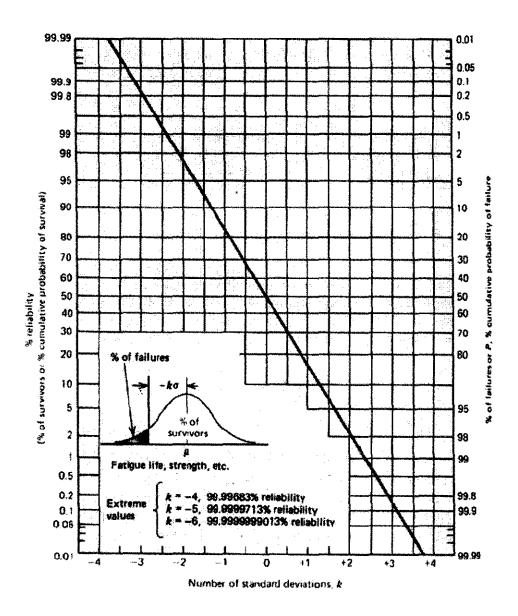
Figure 5: For problem 1

Hand Pruning Spring Figure 6: For problem 1


																			•																									•	
																																												-	
• • • •	• • • •	••••	••••		••••			•••	• • •	• • •	•••	• • •	• • •	• • • •	•••	•	• • •	• • •	•••	• • •	•••	• • •	•••	• • •		•••		• • • •	• • •	•••	• • •	• • •	• • •		• • •	•••	•••	•••	•••	•••	• • •	•••	•••	•••	• • • •
,																																													
••••	••••	• • • •	••••	• • • •	• • • •	• • • •	••••	•••	• • •	• • •	•••	• • •		• • •	• • •	•••	•••	• • •	•••	• • •	• • •	•••	• • •	• • •	•••	•••	• • • •	• • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	•••	•••	• • • •	• • •	• • •	•••	•••	• • • •
• • • • •	••••	• • • •	• • • •	• • • •	••••	• • • •	• • • •	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •	• • •	• • •	•••	• • • •	• • •	•••	•••	• • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •	•••	• • • •		• • •	•••	•••	• • • •

oner

4


<u>Problem 2:</u> AISI 1040 Steel with minimum S_y = 86 kpsi, and S_u = 113 kpsi. Find maximum force F before yielding occurs at point A. (25 points; Static Failure Theories)

- a). Use Maximum Shear Stress Theory.
- b). Use Distortion Energy Theory.
- c). Determine F if Safety Factor is 2.

Problem 3: A shaft is subjected to a maximum load of 10 kN. It is designed to withstand a load of 15 kN. If the maximum load encountered is normally distributed with a standard deviation of 2.5 kN, and if shaft strength is normally distributed with a standard deviation of 2.0 kN, (25 points; Reliability)

- a). What failure percentage would be expected?
- b). How many shafts will be failure if there are 800 shafts in used.
- c). Determine the shaft strength if 8 in 800 shafts can be failure.

Once

<u>Problem 4:</u> A 1018 hot-rolled steel bar has a diameter of 2.5 in. ($S_{ut} = 58 \text{ kpsi.}$, $S_y = 32 \text{ kpsi.}$, $H_B = 116$) It is to be placed in reversed axial loading such that $\sigma_{min} = -10 \text{ kpsi.}$ And $\sigma_{max} = 30 \text{ kpsi.}$ And operating environment of 400° F. Using ASTM minimum properties, and a reliability of 90 percent. (25 points; Fatigue Failure Theories)

- a). Estimate the endurance limit of this bar.
- b). Estimate the number of cycles to a fatigue failure using Modified Goodman criterion.
- c). Estimate the number of cycles to a fatigue failure using Gerber criterion.

On u