มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

สอบปลายภาค ประจำภาคการศึกษา 2 วันที่ 26 กุมภาพันธ์ 2550

วิชา CE 220-504: Introduction to Finite Element Method

ปีการศึกษา 2549 เวลา 13.30 — 16.30. ห้องสอบ A **400**

ชื่อ-สกุล	
รหัส	

คำชี้แจง

- 1.ข้อสอบทั้งหมดมี 6 ข้อ คะแนนรวม 100 คะแนน ดังแสดงในตารางข้างล่าง
- 2.ข้อสอบมีทั้งหมด 5 หน้า (รวมปก) ผู้สอบต้องตรวจสอบว่ามีครบทุกหน้าหรือไม่ (ก่อน ลงมือทำ)
- 3.ให้ทำหมดทุกซ้อลงในสมุดคำตอบ
- 4.อนุญาตให้ใช้เครื่องคิดเลชได้ทุกชนิด
- 5.ห้ามหยิบ หรือยืมสิ่งของใดๆ ของผู้อื่นในห้องสอบ

6. Open Books

ตารางคะแนน

ซ้อที่	คะแนนเต็ม	ได้
1	10	
2	20	
3	25	
4	5	
5	15	
6	25	
รวม	100	

Problem 1 (10 Points)

To determine the element stiffness matrix of a tapered beam,

whose width is constant b = 1, but depth h varies linearly over the element as shown in the figure.

We have to integrate

$$\mathbf{K} = \int_{0}^{1} B^{2}(x)EI(x)dx$$

where B(x) = 6 - 12x.

Use Gauss quadrature to integrate this problem by using only the minimum n-point that can get the exact result.

Problem 2 (20 Points)

In the finite element formulation of near incompressible isotropic materials (as well as plasticity and viscoelasticity) it is convenient to use the so-called *Lame constants* λ and μ instead of E and v in the constitutive equations. Both λ and μ have the physical dimension of stress and are related to E and v by

$$\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}, \quad \mu = G = \frac{E}{2(1+\nu)}.$$

Conversely

$$E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu}, \quad \nu = \frac{\lambda}{2(\lambda + \mu)}.$$

Substitute the second equation into the following equation

$$\begin{aligned} & \text{plane stress:} \quad \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} = \frac{E}{1 - \nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix} \begin{bmatrix} e_{xx} \\ e_{yy} \\ 2e_{xy} \end{bmatrix}, \\ & \text{plane strain:} \quad \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} = \frac{E(1 - \nu)}{(1 + \nu)(1 - 2\nu)} \begin{bmatrix} \frac{1}{\nu} & \frac{\nu}{1 - \nu} & 0 \\ \frac{\nu}{1 - \nu} & 1 & 0 \\ 0 & 0 & \frac{1 - 2\nu}{2(1 - \nu)} \end{bmatrix} \begin{bmatrix} e_{xx} \\ e_{yy} \\ 2e_{xy} \end{bmatrix}. \end{aligned}$$

to express the two stress-strain matrices in terms of λ and μ . Then split the stress-strain matrix E of plane strain as

$$E=E_{\mu}+E_{\lambda}$$

in which \mathbf{E}_{μ} and \mathbf{E}_{λ} contain only μ and λ , respectively, with \mathbf{E}_{μ} diagonal and $E_{\lambda 33} = 0$. This is the Lame or $\{\lambda, \mu\}$ splitting of the plane strain constitutive equations, which leads to the so-called **B**-bar formulation of near-incompressible finite elements. Express \mathbf{E}_{μ} and \mathbf{E}_{λ} also in terms of E and V.

For the plane stress case perform a similar splitting in which where \mathbf{E}_{λ} contains only $\bar{\lambda} = 2\lambda\mu/(\lambda + 2\mu)$ with $E_{\lambda 33} = 0$, and \mathbf{E}_{μ} is a diagonal matrix function of μ and $\bar{\lambda}$. Express \mathbf{E}_{μ} and \mathbf{E}_{λ} also in terms of E and V.

Problem 3 (25 Points)

A cantiveler beam-column is joined to a plane stress plate mesh as depicted in the figure. Both pieces move in the plane $\{x, y\}$. Plane stress elements have two degrees of freedom per node: two translations u_x and u_y along x and y, respectively, whereas a beam-column element has three: two translations u_x and u_y along x and y, and one rotation (positive CCW) θ_z about z. To connect the cantilever beam to the mesh, the following "gluing" conditions are applied:

- (1) The horizontal (u_x) and vertical (u_y) displacements of the beam at their common node (2 of beam, 4 of plate) are the same.
- (2) The beam end rotation θ_2 and the mean rotation of the plate edge 3-5 are the same. For infinitesimal displacements and rotations the latter is $\theta_{35}^{avg} = (u_{x5} u_{x3})/H$.

Questions:

- (a) Write down the three MFC conditions: two from (1) and one from (2), and state whether they are linear and homogeneous.
- (b) Where does the above expression of θ_{35}^{avg} come from? (Geometric interpretation is ok.) Can it be made more accuracy by including u_{x4} ? (To answer this question, observe that the displacements along 3-4 and 4-5 vary linearly. Thus the angle of rotation about z is constant for each of them and (for infinitesimal displacements) may be set equal to the tangent.)

- (c) Write down the master-slave transformation matrix if $\{u_{x2}, u_{y2}, \theta_2\}$ are picked as slaves. It is sufficient to write down the transformation for the DOFs of nodes 2,3,4 and 5, which give a **T** of order 9×6 , since the transformations for the other freedoms are trivial.
- (d) If the penalty method is used, write down the stiffness equations of the three penalty elements assuming the same weight w is used. Their stiffness matrices are of order 2×2 , 2×2 and 3×3 , respectively. (Do not proceed further)
- (e) If Lagrange multiplier adjunction is used, how many Lagrange multipliers will you need to append? (Do not proceed further)

Problems 4 (5 Points)

The free-free stiffness equations of a superelement are

$$\begin{bmatrix} 88 & -44 & -44 & 0 \\ -44 & 132 & -44 & -44 \\ -44 & -44 & 176 & -44 \\ 0 & -44 & -44 & 220 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} 5 \\ 10 \\ 15 \\ 20 \end{bmatrix}$$

Eliminate u_2 and u_3 from the above equation by static condensation (using the explicit inverse formulas), and show (but do not solve) the condense equation system.

Problem 5 (15 Points)

Compute the entries of K^e for the following plane stress triangle:

$$x_1 = 0, y_1 = 0, x_2 = 3, y_2 = 1, x_3 = 2, y_3 = 2,$$

$$\mathbf{E} = \begin{bmatrix} 100 & 25 & 0 \\ 25 & 100 & 0 \\ 0 & 0 & 50 \end{bmatrix}, \quad h = 1.$$

Problem 6 (25 Points)

Consider a tapered bar, shown in the following figure, subjected to its own weight.

- (a) Write the expression for the total potential energy of this bar.
- (b) From the principle of minimum total potential energy, obtain the governing equation (Euler-Largrange equation), and the boundary conditions of this bar. Also indicate the type of boundary conditions.
- (c) Derive the analytical solution of this problem.

Let $\gamma = 10^4 \text{ T/m}^3$; $E = 2 \times 10^7 \text{ T/m}^2$; L = 4 m.

(d) If $A_0 = A_L = 30 \text{ cm}^2$, obtain the Rayleigh-Ritz solution by assuming $\hat{u} = a_1 N_1 + a_2 N_2$ where

 $N_2(x) =$ $0 \quad 0.51$

Determine also an axial force, $\hat{F}(x) = EA \frac{d\hat{u}}{dx}$.

 γ = unit weight E = Modulus of Elasticity $A(0) = A_0$ $A(L) = A_L$ $A(x) = A_0 - \frac{x}{L} (A_0 - A_L)$