ച്ച് എ	1	
ମାର କ୍ୟାୟ	4	₽ .
	୩ନ	D

มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

การสอบปลายภาค ประจำภาคการศึกษาที่ 2

ประจำปีการศึกษา 2549

วันที่ : 23 กุมภาพันธ์ 2550

เวลา : 9:00 – 12:00

วิชา : Chemical Engineering Thermodynamics (230-213)

ห้องสอบ : หัวหุ่น

- อนุญาตให้นำหนังสือและเอกสารอื่นๆ เข้าห้องสอบได้
- อนุญาตให้นำเครื่องคิดเลขทุกรุ่นเข้าห้องสอบได้
- ข้อสอบมีทั้งหมด 5 ข้อ (10 หน้า) ให้ทำทุกข้อ
- กระดาษไม่พอให้ทำต่อด้านหลัง
- ใช้ดินสอทำข้อสอบได้

ทุจริตในการสอบโทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

หน้าที่	ข้อที่	คะแนนเต็ม	คะแนนที่ได้
2	1	15	
3	2	25	
4	3	10	
5	4	15	
, 7	5	50	
	คะแนนรวม	115	

ย. ผกามาศ เจษฎ์พัฒนานนท์
14 กุมภาพันธ์ 2550

O 16 0															
รหล.			,												

From data in the steam tables, determine the fugacity of liquid water at 150°C and
bar. (15 points)

รหัส.	_	_	_													

2. For the system ethylene (1)/propylene (2) as a gas, estimate $f_1^{\Lambda}, f_2^{\Lambda}, \phi_1^{\Lambda}, \text{ and } \phi_2^{\Lambda}$ at 200°C , 20 bar and $y_1 = 0.25$ by using Virial EOS. Set all $k_{ij} = 0$ (25 points)

	รหัส
3. Answer these questions	(10 points)
3.1 What is ideal solution?	(2 points)
3.2 What is $\overline{M_1}^{\infty}$?	(2 points)
3.3 Express the relationship between activity coefficient and Le	ewis/Randall rule.
	(3 points)
3.4 Express how to determine Henry's constant.	(3 points)

รหัส.																	
a 1/161.							٠	٠	٠				٠	٠			

4. For the following systems, finish all calculations.

(15 points)

4.1 A single-effect evaporator concentrates a 25% (by weight) aqueous solution of H_2SO_4 to 75%. The feed rate is 100 lb/s, and the feed temperature is $32^{\circ}F$. The evaporator operates at an absolute pressure of 1 psia, and under these conditions the boiling point of a 75% solution of H_2SO_4 is $200^{\circ}F$. What is the heat-transfer rate in the evaporator? (10 points)

Note: Enthalpy of superheated steam at 200°F and 1 psia = 1150.2 Btu/lb.

4.2 A 25% aqueous solution of H_2SO_4 at $32^{\circ}F$ is mixed with a 75% aqueous solution of H_2SO_4 at $100^{\circ}F$ to form a solution containing 65% H_2SO_4 . (5 points)

- (a) If the mixing is done adiabatically, what is the final temperature of the solution?
- (b) If the final temperature is brought to 80°F, how much heat must be removed during the process?

รหัส.																			
# PI DI .						٠	•			•		r	•	٠		٠	٠		

5. For the binary system acetonitrile(1)/water(2)

(50 points)

5.1 Find γ_{1} and γ_{2} when T = 700 K and x_{1} = 0.5 by UNIFAC Method.

(25 points)

รหัส																								
Ø P+ 61	 •	٠	٠	٠	•	٠	٠	•		٠	٠	٠	٠	٠		٠	٠	٠	٠	٠	٠	٠	٠	٠

5.2 Determine the fugacity coefficients of acetonitrile and water in the vapor mixture at 700 K 40 bar and $y_1 = 0.5$ by Soave/Redlich/Kwong EOS. (25 points)