a m o	su culsuôn do
ชื่อ	รหสประจำตัว

PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Final Examination: Semester II (#3)

Date: 24 February 2007

Subject: 230-630 Advanced Transport Phenomena I

Academic Year: 2006

9.00-12.00

R300

- ข้อสอบมี 5 ข้อ จำนวน 7 หน้า ต้องทำทุกข้อ คะแนนเต็ม 70 คะแนน
- ควรใช้เวลาทำข้อสอบโดยเฉลี่ย 2 นาที/คะแนน

ข้อที่	คะแนนเต็ม	ได้คะแนน
1	15	
2	10	
3	15	
4	10	
5	20	
รวม	70	

- ขอให้นักศึกษาทำข้อสอบในที่ว่างซึ่งได้เตรียมไว้สำหรับข้อสอบแต่ละข้อ โดยอาจใช้เนื้อที่ด้านหลัง ทำข้อสอบเพิ่มเติมได้
- อนุญาตให้นำหนังสือ เอกสาร เครื่องคำนวณ และอุปกรณ์อื่นๆ เข้าห้องสอบได้

ทุจริตในการสอบ โทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

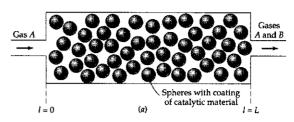
สุธรรม สุขมณี ผู้ออกข้อสอบ 9 กุมภาพันธ์ 2550

1	\sim	
4 ,	_ ' / _	
To		รหสประจาตว

1) Predict \mathcal{D}_{AB} for an equimolar mixture of N₂ and C₂H₆ at 288.2 K and 40 atm. Assume this mixture having an ideal gas behavior and the value of universal gas constant (*R*) is 82.0578 atm-cm³/mole-K (15 points)

1	\sim	
A C		ငေးရှိတာ ကြလည်လည်လ
ชอ	- 5 -	รหสประจำตว

2) Verify the relation between fluxes used for interrelating expressions in mass units and those in molar units in binary systems:


$$\frac{j_A}{\rho \omega_A \omega_B} = \frac{J_A^*}{c x_A x_B}$$
 (10 points)

	- 4 -	รหัสประจำตัว	
• • • • • • • • • • • • • • • • • • • •	- 4 -	รหัสประจำตัว	

3) Gas A entering a catalytic reactor and diffusing from a gas stream to a catalyst surface and reacts instantaneously and irreversibly as follows:

$$A \rightarrow 2B$$

Gas B diffuses back to the gas stream. Derive an expression for the molar flux of $A(N_A)$ at constant pressure P and steady state in term of partial pressures (p_A, p_B) .

(15 points)

4) Gas A moves through an isothermal tubular reactor with an inside diameter D and length of L. Then, A disappears slowly by a first order reaction to gas B. If an entering concentration of A is c_{A0} , the time and area smoothed velocity of gas inside the reactor is $\langle \overline{v}_z \rangle$ and the transport properties of the gases ρ , μ , k, C_P and D_{AB} can be assumed constant. Perform a dimensional analysis for an equation of continuity of A to find the dimensionless groups to describe this reacting system (10 points)

a Ma	- 6 -	รหัสประจำตัว
To	U	1N N D 1 g a 1 At 1

- 5) Dry air at 310 K and average pressure of 101.3 kPa ($\rho = 1.14 \text{ kg/m}^3$, $\mu = 0.018 \text{ mPa.s}$) passes through a naphthalene tube that has an inside diameter of 50 mm, flowing at a bulk velocity of 20 m/s. Assuming that the change of pressure along the tube is negligible and the temperature of naphthalene surface is at 310 K. At its surface temperature, naphthalene has a vapor pressure of 26 Pa and a diffusivity in air of $5.40 \times 10^{-6} \text{ m}^2/\text{s}$.
 - 5.1 Determine the length of tube that is necessary to produce a naphthalene concentration in the exiting air stream of 3.70×10^{-3} mol/m³. (14 points)
 - 5.2 If the wall shear stress (τ_0) for the flowing air stream is taken as 1.14 N/m². Estimate the eddy (turbulent) mass diffusity at the tube centerline. (6 points)