PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Final Examination: Semester 2 Academic Year: 2006

Date: February 24, 2007 Time: 9:00-12:00 Subject: 226-331: Industrial Automatic Control Room: R300

ทุจริตในการสอบ โทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

Instructions

- There are 5 questions in 4 pages.
- Attempt all questions and write the answer in the answer book.
- Dictionaries, calculators, all notes, books and materials are allowed. (Open-book exam.)
- Total score is 75.

Name:	Student
	ID

Question #	Full Score	Assigned Score
1	25	
2	10	
3	15	
4	13	
5	12	
Total	75	

Assoc. Prof. Somehai Chuchom

Question 1 (25 marks)

Briefly answer the following questions.

- 1.1 How can you tell from the root locus if a system is unstable?
- 1.2 Describe how the zeros of the open-loop system affect the root locus and the transient response.
- 1.3 Explain how to improve the transient response by making use of the root locus.
- 1.4 How the control system can be designed to meet the transient and the steady-state error specifications simultaneously?
- 1.5 What is a PID controller? How is it useful? Why?
- 1.6 What are the Peak time (T_p), Percent overshoot (%OS), Settling time (T_s), and Rise time (T_r) of the underdamped second-order system? Show them graphically.
- 1.7 There are 2 parts of the time response for the first-order control system, what are they? Explain.
- 1.8 Compare the advantages of applying hydraulic controller to pneumatic controller (as a plant of the control system).

Question 2 (10 marks)

For the stable system shown below

2.1 Find the position, velocity and acceleration error constants.

- 2.2 Find the steady-state error for
 - a) a unit-step input
 - b) a unit-ramp input

Question 3 (15 marks)

Sketch the root locus of the system shown below

Question 4 (13 marks)

A block diagram of a welding head positioning system is shown below. What are the ranges of ${\bf K}$ and ${\bf a}$ for which the system is stable?

Question 5 (12 marks)

Find the step response of each of the transfer functions shown in equation 5-1 through 5-3 and compare them graphically in the time domain.

Hint: The step response, $C_i(s)$, for a transfer function, $T_i(s)$, is the response of the transfer function $T_i(s)$ and a unit step input.