Name : Student ID # :	
-----------------------	--

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบปลายภาค ประจำภาคการศึกษาที่ 2 วันพฤหัสที่ 22 กุมภาพันธ์ พ.ศ. 2550 วิชา 215-324 : กลศาสตร์เครื่องจักรกล ประจำปีการศึกษา 2549 เวลา 13.30-16.30 น.

ห้องสอบ A400

ทุจริตในการสอบ ปรับขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

<u>คำสั่ง</u>

- 1. ข้อสอบมีทั้งหมด 5 ข้อ ให้ทำลงในข้อสอบทุกข้อ
- 2. อนุญาตให้ใช้เครื่องคิดเลขได้
- 3. ให้ใช้เครื่องมือเขียนแบบได้
- 4. อนุญาตให้นำกระดาษขนาด A4 จำนวน 1 แผ่นเข้าห้องสอบได้ แต่ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
1	20	
2	20	
3	20	
4	20	
5	20	
รวม	100	

Name:	Student ID # :	

1) Link AB is 3 in long and the acceleration vector of points A and B are as shown. Find the acceleration of point C at the mid-length of the link and determine the angular acceleration of this link.

Scale 10 mm: 1 in

 $+_{\mathsf{O_a}}$

Scale 2 mm: 1 in/s2

lame :	Student ID # :

2) If the input shaft of the planetary gear train is rotating at 150 rpm clockwise as viewed from the right, determine angular velocity of the output shaft E as viewed from the right. Note that this gear train is actually two simple planetary gear sets connected in series.

Name :	Student ID #:

3) The slider-crank mechanism as shown has $R_{O2A} = R_{AC} = 50$ mm, $R_{AD} = 30$ mm, $R_{DC} = 40$ mm. It is subjected to a 30-N vertical force on link 3, and a 10-N horizontal force on link 4. Draw the forces on the free body diagram of link 1 coupled with link 2, and the free body diagram of link 3 coupled with link 4. Determine the magnitude of moment M_{12} to keep the mechanism in static equilibrium. The friction between slider 4 and ground is negligible.

Name:	Student ID #:

4) The mechanism consists of link ABC and 2 light weight frictionless pins at A and B. Point A is moving at constant speed 30 mm/s to the right. The velocity and acceleration analysis diagrams are given as shown. If the centroid of link ABC is at B with mass of 2 kg, and I_G = 3000 kg.mm². Determine the force P acting perpendicular to link ABC at C.

Name :	Student ID #:
1141110.	Otaaont 12 II .

5) The figure shows a system with three masses on a rotating shaft; $m_1 = 0.1$ kg at 90° and radius $R_1 = 30$ mm, $m_2 = 0.2$ kg @ 240° and radius $R_2 = 30$ mm, and $m_3 = 0.15$ kg @ 0° and radius $R_3 = 20$ mm. Determine the magnitude and direction of the balance masses needed to dynamically balance the rotor. The balance masses will be placed in planes 4 and 5 at a 30 mm radius.

