มหาวิทยาลัยสงชลานครินทร์ คณะวิศวกรรมศาสตร์

สอบกลางภาค ประจำภาคการศึกษา 1 วันที่ 5 สิงหาคม 2550 วิชา CE 220-302,221-302: Structural Analysis 1 ปีการศึกษา 2550 เวลา 13.30 — 16.30. ห้องสอบ A 401

ชื่อ-สกุล	• • •	
รหัส		

คำชี้แจง

- 1.ข้อสอบทั้งหมดมี 5 ข้อ คะแนนรวม 80 คะแนน ดังแสดงในตารางข้างล่าง
- 2.ข้อสอบมีทั้งหมด 11 แผ่น (รวมปก) ผู้สอบต้องตรวจสอบว่ามีครบทุกหน้าหรือไม่ (ก่อนลงมือทำ)
- 3.ให้ทำหมดทุกข้อลงในตัวข้อสอบถ้าไม่พอให้ใช้หน้าหลังได้
- 4.อนุญาตให้ใช้เครื่องคิดเลขได้ทุกชนิด
- 5.ห้ามหยิบ หรือยืมสิ่งของใดๆ ของผู้อื่นในห้องสอบ ทุจริตติดE

6. GOOD LUCK

ตารางคะแนน

ข้อที่	คะแนนเต็ม	ได้
1	15	
2	10	
3	10	
4	20	
5	25	
รวม	80	

Problem 1 (15 Points)

For the truss shown below:

- a.) Determine the support reactions at A and B.
- b.) Determine the member force in members EF, FG and CD. (Method of section should be used.)

Problem 2 (10 Points)

From the following figure, compute the support reactions at A and D. (B and C are hinges.) Draw the shear and moment curves for each member of the frame. Sketch the deflected shape.

Problem 3 (10 Points)

Compute the support reactions and the maximum and minimum tension in the cable in the following figure.

Problem 4 (20 Points)

For the structure shown:

- (a) Determine the ${\bf maximum}$ and ${\bf minimum}$ tension of the cable and support reactions at $\,A$ and $\,C$
- (b) Draw shear & bending-moment diagrams of the beam.

(The 1 kN/m distributed force is directly transferred to the beam AC and the point of the cable above hinge B is the lowest point.)

Problem 5 (25 Points)

For the structure shown:

Compute the vertical displacement of the hinge at C by using virtual work method. (Neglect axial and shear deformation.) EI is constant for all members, E = 200 GPa, $I = 1800 \times 10^6 \text{mm}^4$.

