มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

การสอบกลางภาค ประจำภาคการศึกษาที่ 1 สอบวันที่ 2 สิงหาคม 2550 วิชา 220-528 Soil Dynamics ปีการศึกษา 2550 เวลา 13,30-16.30 น. ห้องสอบ R200

ข้อกำหนด.

- 1. ข้อสอบ มี 4 ข้อ คะแนนเต็ม 100 คะแนน ให้ทำทุกข้อ
- 2. ให้นำสมุด Lecture, Sheet และ หนังสือ เข้าห้องสอบได้
- 3. ให้นำเครื่องคิดเลขทุกชนิดเข้าห้องสอบได้

ออกข้อสอบโคย คร. พิพัฒน์ ทองฉิม 25 กรกฎาคม 2550

1. For the system shown in Figure 1. Given k_1 and k_2 = 200 N/mm, k_3 = 250 N/mm, k_4 and k_5 = 300 N/mm, mass = 200 kg, and Q_0 = 50 N, ω = 25 rad/s. Determine each of the following.

(30 points)

- 1.1 The natural frequency and period.
- 1.2 The velocity at t = 5 sec.
- 1.3 The maximum dynamic force.

Figure 1. Forced Vibration of a Spring-Mass System

- 2. A uniformly graded dry sand specimen was tested in a resonant column device. The shear wave velocity v_s determine by torsional vibration of the specimen was 800 ft/s. The longitudinal wave velocity determine by using a similar specimen was 1250 ft/s. Determine each of the following. (20 points)
 - 2.1 Poisson's ratio
 - 2.2 Modulus of elasticity (E) and shear modulus (G) if the void ratio and the specific gravity of soil solids of the specimen were 0.65 and 2.70, respectively.
- 3. A 20-m-thick sand layer in the field is underlain by rock. The groundwater table is located at a depth of 3 m measured from the ground surface. Determine the maximum shear modulus (in SI units) of this sand at a depth of 15 m below the ground surface. Given: void ratio = 0.55, specific gravity of soil solids = 2.65, angle of friction of sand = 35°. Assume the sand to be angular-grained. (20 points)

4. Given: (30 points)

Machine Weight = 30,000 lb

Dynamic Force = 5,000 lb

Frequency = 1200 cpm

Dimension of Base = 6 * 12 ft

Foundation The top of foundation = 8*14 ft

The bottom of foundation = 12 *18 ft

Depth = 4 ft.

Unit weight of concrete = 150 pcf.

Soil Unit weight of sand = 110 pcf.

 $\beta = 2500 psi / ft$

Damping ratio = 15%

Determine:

- 4.1 The maximum displacement of foundation
- 4.2 The minimum and maximum force transmitted to the subgrade.