มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

สอบกลางภาค ประจำภาคการศึกษา 1 วันที่ 4 สิงหาคม 2550 วิชา 220-593 Applied Engineering Mathematics ปีการศึกษา 2550 เวลา 09.00 — 12.00. ห้องสอบ หัวหุ่น(วศ)

ชื่อ-สกุล	• • • • • • • • • • • • • • • • • • • •
รหัส	

คำชี้แจง

- 1.ข้อสอบทั้งหมดมี 5 ข้อ คะแนนรวม 80 คะแนน ดังแสดงในตารางข้างล่าง
- 2.ซ้อสอบมีทั้งหมด 3 แผ่น (รวมปก) ผู้สอบต้องตรวจสอบว่ามีครบทุกหน้าหรือไม่ (ก่อน ลงมือทำ)
- 3.ให้ทำหมดทุกข้อลงในสมุดคำตอบ
- 4.อนุญาตให้ใช้เครื่องคิดเลขได้ทุกชนิด
- 5.ห้ามหยิบ หรือยืมสิ่งของใดๆ ของผู้อื่นในห้องสอบ
- 6.<u>อนุญาตให้นำโน้ตA4จดหน้าหลังเข้าได้คนละ 1 แผ่</u>น

7. GOOD LUCK

ตารางคะแนน

ข้อที่	คะแนนเต็ม	ได้
1	15	
2	15	
3	15	
4	15	
5	20	
รวม	80	

Problem 1 (15 Points)

Find a real number "a" which makes the following system have

- a) no solution
- b) infinitely many solutions
- c) exactly solution

$$2x + y = 3$$

$$x + y + z = 2$$

$$4x + 2y + (a^{2} - 4)z = a + 4$$

Problem 2 (15 Points)

How many symmetric matrices A which can be constructed? If their eigenvectors and eigenvalues are respectively.

$$\mathbf{V} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

and $\lambda_1 = 2$ while λ_2 and $\lambda_3 \in \{1,2,3,4\}$

Problem 3 (15 Points)

Find the tenth power of matrix $A(A^{10})$ by using diagonalization of a matrix, if

$$\mathbf{A} = \begin{bmatrix} 5 & -4 & 4 \\ 12 & -11 & 12 \\ 4 & -4 & 5 \end{bmatrix}$$

Which has the eigenvalue matrix and the associated eigenvector matrix as

$$\mathbf{D} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{V} = \begin{bmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$

Problem 4 (15 Points)

For the system of ordinary differential equations:

$$\frac{dx}{dt} = \mathbf{A}\mathbf{x}$$

Obtain the general solution and also its particular solution if

$$\mathbf{A} = \begin{bmatrix} 5 & -4 & 4 \\ 12 & -11 & 12 \\ 4 & -4 & 5 \end{bmatrix} \text{ and } \mathbf{x}(0) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Hint: A is the same as Problem 3.

Problem 5 (20 Points)

Find the solutions of the following linear differential equations:

a)
$$y' = \frac{1}{16x^2}y^2 - y + 4x(x+4)$$

b)
$$x^2y'' - 3xy' + 2y = 0$$

c)
$$y'' - 3y' + 2y = e^x$$

d)
$$y'' - 3y' + 2y = e^x + 1$$