Name	Code
Ivanic	Couc

PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination: Semester I

Academic year: 2007

Date: 5 August 2007

Time: 9.00-12.00

Subject: 230 – 425 Process Dynamics and Control

Room: R300

ทุจริตในการสอบ โทษขั้นต่ำ คือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

• Only hand written note in a sheet of A4 and a dictionary are allowed.

• There are 9 pages of the exam.

• Write your name or your code on each page.

• If need to write the answers on the back of each page, please identify the problem number.

Problem Number	Score	
1	20	
2	40	
3	40	
4	20	
5	60	
Total	180	

Dr. Kulchanat Prasertsit

Table 1 Laplace Transform

F(s)	f(t), t > 0
$Y(s) = \int_0^\infty \exp(-st)y(t)dt$	f(t), t>0 $y(t)$
Y(s)	$y(t) = \frac{1}{j2\pi} \int_{c-j\infty}^{c+j\infty} \exp(st) Y(s) ds$
$s^{n}Y(s) - s^{n-1}[y(0)]$	nth derivative
$-s^{n-2}[y'(0)] - \dots - s[y^{(n-2)}(0)]$ $-[y^{(n-1)}(0)]$	y ⁽ⁿ⁾ (t)
$\frac{1}{s}F(s)$	$\int_0^t Y(\tau) d\tau$
F(s)G(s)	$\int_0^t f(t-\tau)g(\tau)d\tau$
$\frac{1}{\alpha}F\left(\frac{s}{\alpha}\right)$ $F(s-\alpha)$	f(at)
F(s - α)	$\exp(\alpha t) f(t)$
$\frac{1}{s^2-\alpha^2}$	$\frac{1}{\alpha}\sinh\left(\alpha t\right)$
$\frac{1}{s^2 - \alpha^2}$ $\frac{s}{s^2 - \alpha^2}$	cosh(at)
$\arctan\left(\frac{\alpha}{s}\right)$	$\frac{1}{t}\sin\left(\alpha t\right)$
1	$\delta(t)$, $\delta(t-\alpha)$
exp (- αs), α 2 0	$\delta(t-\alpha)$
$\frac{1}{s}$	u(t)
$\frac{1}{s} \exp(-\alpha s)$	u(t – α)
$\frac{1}{s^n}, n = 1, 2, 3, \dots$	$\frac{t^{n-1}}{(n-1)!}$
$\frac{1}{s+\alpha}$	exp (- αt)
$\frac{1}{(s+\alpha)^n}$, n=1, 2, 3,	$\left[\frac{t^{n-1}}{(n-1)!}\right] \exp(-\alpha t)$
$\frac{\alpha}{s^2 + \alpha^2}$	sin (oxt)
$\frac{s}{s^2 + \alpha^2}$	cos(at)

Name	Code

- 1. (20 points)
 - 1.1 (10 points) Write "T" for correct statement and "F" for false statement (2 points for the correct answers and -1 point for incorrect answers)
 - a) ____Feed back control and feed forward control both require a measured variable.
 - b) The process variable to be controlled is measured in feedback control.
 - c) ____Feed forward control can provide perfect control: that is, the output can be kept at its setpoint even with an imperfect process model.
 - d) ____Feedback control will always take action regardless of the accuracy of any process model that was used to design it and the source of a disturbance.
 - e) Figure 1.1 is feed back control

1.2 (10 points) "Fresh feed A and fresh feed B are fed to CSTR with the flow rate of F_A and F_B, respectively. For safety reason, the level of the tank should not less

than 1/3 of the tank. And for economic reason, the concentration of x_C must be higher than 95%. At the moment the operator accidentally, opened valve for stream F_{Out} greater than its steady-state opening"

From the sentences classify all variables in the table below

Controlled variables	Disturbance	Manipulated variables
	-	

2. (40 points) The temperature of the mercury in mercury thermometer can be described in the following equation:

$$mC\frac{dT_{y}}{dt} = hA(T_{x} - T_{y})$$

m = mass of mercury in bulb

C = heat capacity of mercury

h = film coefficient of heat transfer

- 2.1 (10 points) Show how to get the equation and assumptions used for this problem.
- 2.2 (15 points) From the differential equation, use Laplace transform and deviation variable to find transfer function of $T'_{y}(s) / T'_{x}(s)$.
- 2.3 (15 points) If the changing in surrounding temperature is ramp function;

$$(T_x = T_x + b*t \colon t {\geq 0}$$
), find $T'_y(t)$ and $T'_y(\infty)$

3. (40 points)

- 3.1 (15 points) Find transfer function of Y(s)/X(s).
- 3.2 (10 points) Show characteristic equation of the process.
- 3.3 (15 points) If $G_1 = 1/(s+1)$, $G_2 = (s+2)$, $G_3 = 1/(3s+1)$, $H_1 = 1$ and $H_2 = 2$, Find system order and find the steady-state value of Y(s) when x(t) = 5s(t)

- 4. (20 points) Process Response
 - 4.1 (10 points) The response of a liquid level in tank from a step change input is shown in the following figure. Answer the following question;

Figure 4.1

- a) What is the order of the system _____
- b) If the liquid input flow rate changes from 5 cm³/s to 7 cm³/s,

 $\tau_p = \underline{\hspace{1cm}}, K_p = \underline{\hspace{1cm}}$ Process Transfer function

4.2 (10 points) Figure 4.2 is the response of a tank temperature. The system is found as the 2nd-order. Answer the

following question

- a) Rise time =
- b) % Overshoot =____
- c) Decay ratio = _____
- d) Settling time =____
- e) Period =____

5. (60 points) The process consists of 2-connecting tanks as shown in figure 5. Using deviation variables to

Figure 5

- 5.1 (30)Find transfer function; $H_{2}^{'}(s)/Q_{o}^{'}(s)$
- 5.2 (20) Determine the process order, damping factor, process time constant and process gain.
- 5.3 (10) Does the process stable if the change in q_0 is step function? Explain your answer.

(Let $R_1 = h_1/q_1$, $R_2 = h_2/\sqrt{q_2}$, $q \equiv$ volumetric flow rate, $A \equiv$ cross section area of each tank, $h \equiv$ liquid level of each tank)