PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination: Semester I

Academic Year: 2007

Date: 4 August 2007

Time: 09.00 - 12.00

Subject : 230 - 463 Polymer Technology

Room: R 300

Student Name:	 ID no	•
Student Manie.	 и по.	

Number of questions: 4

Time: 3 hours

Total marks: 100

Books and notes are not allowed

Calculators are allowed

Writing in pencil is allowed

Question	Full Marks	Marks Received
1	24	
2	25	
3	25	
4	26	
Total	100	

ทุจริตในการสอบโทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

- 1. a) Compare the characteristics of step and chain polymerizations.
 - b) Write the repeating units of the following polymers: polyester, natural rubber, polystyrene and polyacrylonitrile
 - c) Write a polymerization reaction when hexamethylene diamine, H₂N(CH₂)₆NH₂ reacts with adipic acid, HOOC(CH₂)₄COOH. What is the name of polymer formed?
 - d) Why is chain transfer to initiator relatively unimportant in free radical chain reaction, even when the initiator's chain transfer constant is large?
 - e) In a free radical chain polymerization, what would be the effect upon x_n when $[M_n]$ is increased 2 times at constant $[I_n]$?
 - f) In a free radical chain polymerization of styrene, what would be the effect upon molecular weight and molecular weight distribution if the solvent used is changed from benzene to carbon tetrachloride?
 - g) Write initiation and termination reactions for polystyrene using Lewis catalyst, BF₃ by cationic polymerization.
 - h) Explain the catalyst systems used in co-ordination polymerization.

(24 marks)

Answer to Q1

Student Name: ID no.:.....

2. a) In the stepwise polymerization of two monomers adipic acid, HOOC-(CH₂)₄-COOH and ethylene glycol, HO-(CH₂)₂-OH it was planned to add both reactants in stoichiometric amount. If ethylene glycol contains 1% methanol CH₃OH, calculate the \overline{x}_n and \overline{M}_n of the polymer formed when p =0.999. Note that:

In the reaction of monomer types A-A and B-B with an excess of functional group type B the number-average degree of polymerization is given by

$$\frac{-}{x_n} = \frac{1+r}{1+r-2rp}$$

where $r = ratio of the functional group types in which <math>r \le 1$ p = extent of reaction of the functional group type A

b) Suggest how you would derive the equation given in question 2a).

(5 marks)

- c) A polymerization system contains of 1.2 moles of a dicarboxylic acid (diacid),0.4 moles of glycerol (triol) and 0.6 moles of ethylene glycol (diol).
 - 2c.1 Would the gelation occur and at what extent of reaction?. Note that:

$$p = \frac{2}{f_{av}} - \frac{2}{\overline{X}_n f_{av}}$$

2c.2 Calculate p_c by statistics and branching coefficient, α_c .

Note that:

f = functionality of the branch unit

$$\begin{split} \alpha_{\rm c} &= \frac{1}{(\text{f-1})} = \frac{\text{rp}_{\rm c}^2 \rho}{1 - \text{rp}_{\rm c}^2 (1 - \rho)} \\ \text{r} &= \frac{\text{All number of F.G. type A}}{\text{All number of F.G. type B}} = \frac{N_{\rm A}}{N_{\rm B}} \end{split}$$

$$\rho = \frac{\text{Number of F.G. type A in branch unit}}{\text{Number of F.G. type A in reaction mixture}}$$

(15 marks)

Student Name: ID no.:.....

3. One hundred liters of methyl methacrylate, MMA is reacted with 5.0 moles of an initiator at 60 °C. No solvent is used. Initiator concentration can be assumed constant during the first 10 hours of reaction.

mol. wt. of MMA monomer is 100.1 g/mol

density of MMA monomer is 0.94 g/cm³

$$k_p = 5.5 \times 10^2 \text{ L/ (mol.s)},$$

 $k_t = 25.5 \times 10^6 \, L/ \, (mol.s)$

initiator half-life = 50 hours

initiator efficiency, f = 0.7

- 3a) Calculate the kinetic chain length.
- 3b) How much polymer has been made in the first 3 hours of the reaction?
- 3c) If termination occurs 80% by combination and 20% by disproportionation, estimate the \overline{x}_n and molecular weight \overline{M}_n of the polymer formed.

Note that:

initiator half life =
$$\frac{\ln 2}{k_d}$$

$$- \frac{d [M]}{dt} = \frac{k_p}{k_t^{1/2}} (fk_d [I])^{1/2} [M]$$

-
$$\ln \frac{[M]}{[M]_o} = \frac{k_p}{k_t^{1/2}} (f.k_d [I])^{1/2}.t$$

$$\nu = \frac{k_{p} [M]}{2 (f k_{d} k_{t} [I])^{1/2}}$$

(25 marks)

ID no.:
117 110

- 4. Styrene (monomer 1) at 4 mol. L^{-1} and methyl methacrylate (monomer 2) at 12 mol. L^{-1} concentration are copolymerized in the reactor at 60°C in benzene solution. The free radical reaction is initiated by adding 0.15 mol. L^{-1} of azobisisobutyronitrile. The reactivity ratios are $r_1 = 0.52$ and $r_2 = 0.46$.
 - 4.1 Plot F₁ vs. f₁ on the provided graph on page 12. What is the copolymer structure?
 - 4.2 Calculate the copolymer composition (in mole percent) formed at an early stage of the reaction.
 - 4.3 Will a composition drift occur? Why?
 - 4.4 Show how to derive an equation for azeotropic feed composition, $\rm f_{\rm c}.$
 - 4.5 Would the azeotropic composition occur in this system?
 What feed composition gives constant product composition?
 Note that:

$$\frac{d [M_1]}{d [M_2]} = \frac{[M_1] (r_1 [M_1] + [M_2])}{[M_2] ([M_1] + r_2 [M_2])}$$

$$F_1 = \frac{r_1 f_1^2 + f_1 f_2}{r_1 f_1^2 + 2f_1 f_2 + r_2 f_2^2}$$

$$(f_1)_c = \frac{1 - r_2}{2 - r_1 - r_2}$$

(26 marks)

_____ End of Question

11

Graph paper for Question (4.1)

Student Name: ID no.:....

Answer to Q4.

Graph paper for Question (4.1)

Copolymer-feed composition

