PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination: Semester I Academic Year: 2007

Date: July 29, 2007 Time: 9:00-12:00

Subject: 230-601 Advanced Engineering Room: A201

Mathematics for Chemical Engineers

อนุญาตให้นำเอกสารและเครื่องคำนวณทุกชนิคเข้าห้องสอบได้ ทุจริตในการสอบโทษขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการศึกษา 1 ภาคการศึกษา

Please do all 4 questions. Show all your work to receive full or partial credit. Final score is 135. (Total page = 9, including first page)

Question #	Total Score	Score
1.1	10	
1.2	15	
1.3	15	
1.4	20	
1.5	10	
2	20	
3	25	
4	20	
Total	135	

สุกฤทธิรา รัตนวิไล ผู้ออกข้อสอบ 1. Solve the differential equation. (70 scores)

1.1
$$y'' - y' - 6y = 12xe^x$$
 (15 scores)

1.2 $X^2Y'' + XY' - Y = X$

Using Variation of Parameter Method or Inverse Operator Method. (15 scores)

1.3
$$x^2y' + 2xy - y^3 = 0$$
 (15scores)

1.4 $(x^2 + 1)y'' + xy' - y = 0$

Can you solve this differential equation by Power Series method? If you can, please show how to solve it. (20 scores)

1.5

$$y = k_1 e^{(\lambda + \mu i)x} + k_2 e^{(\lambda - \mu i)x}$$

The general solution for ODE is $y = k_1 e^{(\lambda + \mu i)x} + k_2 e^{(\lambda - \mu i)x}$ Rewritten this solution in term of $\sin(\mu x)$ and $\cos(\mu x)$ (10 scores)

- 2. Cylindrical metal rod is use as promoters on the exterior of a hot surface with surface temperature of 700 °C. The ambient air flowing around the cylindrical metal rod has a temperature of 30 °C. (20 scores)
 - The metal conductivity = k (sec . cm . K)
 - The heat transfer coefficient = h (m² . hr . °C)
 - 2.1 Formulate steady state differential equation of metal rod temperature (T) in the x direction (X is directed outward from the hot surface, and rod radius is R)
 - 2.2 Find the characteristic root s for the ODE in part 2.1

- 3. Consider a tank with a 500 L capacity that initially contains 200 L of water with 100 kg of salt in solution. Water containing 1 kg of salt/L is entering at a rate of 3 L/min, and the mixture is allowed to flow out of the tank at a rate of 2 L/min. (25 scores)
 - 3.1 Formulate differential equation between $C_A(t)$ and time (t) $C_A(t)$ is the concentration of salt at time t
 - 3.2 Determine the concentration (kg/L) of salt in the tank at the point of overflowing.

4. Suppose that in a certain autocatalytic chemical reaction a compound A reacts to form compound B. Further, suppose that the initial concentration of A is C_{A0} and that $C_{B}(t)$ is the concentration of B at time (t). Then $C_{A0} - C_{B}(t)$ is the concentration of A at time t. (20 scores)

Reaction rate
$$\frac{dC_s(t)}{dt} = kC_s(t)(C_{A0} - C_s(t))$$

Determine $C_B(t)$ if $C_B(0) = C_{B0}$

//End