Name :	Student ID # :
--------	----------------

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบกลางภาค ประจำภาคการศึกษาที่ 1 วันศุกร์ที่ 3 สิงหาคม พ.ศ. 2550 วิชา 215-324 : กลศาสตร์เครื่องจักรกล

ประจำปีการศึกษา 2550 เวลา 13.30-16.30 น. ห้องสอบ ME110

ทุจริตในการสอบ ปรับขั้นดำคือปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

<u>คำสั่ง</u>

- 1. ข้อสอบมีทั้งหมด 5 ข้อ ให้ทำลงในข้อสอบทุกข้อ
- 2. อนุญาตให้ใช้เครื่องคิดเลขได้
- 3. ให้ใช้เครื่องมือเขียนแบบได้
- 4. อนุญาตให้นำกระดาษขนาด A4 จำนวน 1 แผ่นเข้าห้องสอบได้ แต่ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
1	20	
2	20	
3	20	
4	20	
5	20	
รวม	100	

(a) The contact between the cylinder and the ground is a rolling contact.
 What is the degree of freedom of this joint? (2 points)

(b) What is the degree of freedom of this pin-in-slot joint. (2 points)

(c) Determine the mobility of this mechanism. (3 points)

(d) Determine what type of contact (rolling or sliding) the joint between links 2 and 3 must be, in order that the mobility of this mechanism is 1. (3 points)

(e) How many poles does this mechanism have ? Also locate the poles (instantaneous centers of velocity) P_{13} , P_{15} , P_{24} , and P_{46} of this mechanism in the figure. (10 points)

Student ID # : _____

2) The mechanism is shown in the figure.

- (a) Draw the mechanism when the slider 6 is at its limit positions and determine the stroke of the slider 6.(16 points)
- (b) If link 2 is rotating with a constant speed, which direction must ω_2 be so that it is a quick-return ? (2 points) (c) Determine the time ratio between advance stroke and return stroke. (2 points)

3) The slider crank mechanism is as shown in the figure, with $R_{AB} = 30$ mm, $R_{BC} = 50$ mm. Link 4 is moving downward with a constant speed of 50 mm/s. Determine the angular velocities of links 2 and 3, and velocity and acceleration of point B. (20 points)

Scale 1 : 1

Scale 1 mm : 1 mm/s

0 v

Scale 1 mm : 1 mm/s^2

0a ₊

4) If link 2 of the mechanism shown is rotating counterclockwise at a constant speed of 2 rad/s. Determine the velocity of point B, and the angular velocity of link 3. (20 points)

Scale 1 mm : 1 mm/s

+ 0v

Page 6 of 7

Name:	
Haine .	

Student ID # : _____

5) A four-bar linkage is as shown in the position. If link 2 is rotating counterclockwise at a constant speed of 1 rad/s. Determine the angular velocities of link 3 and link 4. Also use graphical method to determine the acceleration of points A3 and A4, and angular acceleration of link 4. (20 points)

5) A four-bar linkage is as shown in the position. If link 2 is rotating counterclockwise at a constant speed of 1 rad/s. Determine the angular velocities of link 3 and link 4. Also use graphical method to determine the acceleration of points A3 and A4, and angular acceleration of link 4. (20 points)

Scale 1 mm : 1 mm/s^2

Da
+