4		
VO-	ิสก	ត

รหัก

section

มหาวิทยาลัยสงขลานครินทร์

คณะวิศวกรรมศาสตร์

การสอบกลางภาค ประจำภาคการศึกษาที่ 1

ปีการศึกษา 2550

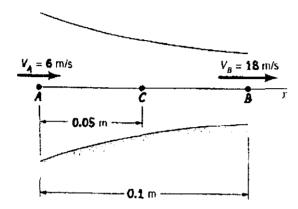
วันที่ 5 สิงหาคม 2549

เวลา 13.30 - 16.30 น.

วิชา 215-342 Mechanics of Fluid II

ห้องสอบ R200

คำสั่ง


- 1. ข้อสอบมีทั้งหมด 5 ข้อ ให้ทำทุกข้อ
- 2. อนุญาตให้นำ Dictionary เข้าห้องสอบ
- 3. อนุญาตให้นำเครื่องคิดเลขเข้าห้องสอบ
- 4. อนุญาตให้นำกระดาษ A4 เขียนด้วยลายมือ (ห้ามถ่ายเอกสาร) เข้าห้องสอบ
- 5. ให้เขียนชื่อ-สกุล, รหัสนักศึกษา และ section ลงในข้อสอบทุกหน้า
- 6. ห้ามยืมอุปกรณ์ทุกชนิดในห้องสอบ

ทุจริตในการสอบ โทษขั้นต่ำปรับตกในรายวิชานั้น และพักการเรียน 1 ภาคการศึกษา

ข้อที่	คะแนนเต็ม	คะแนนที่ได้
1	10	
2	10	
3	15	
4	20	
5	20	
รวม	75(30%)	

คร. กิตตินันท์ มลิวรรณ (01)ผศ.คร. จันทกานต์ ทวีกุล (02)(ผู้ออกข้อสอบ)

1) The fluid velocity along the x axis changes from 6 m/s at point A to 18 m/s at point B. It is also known that the velocity is a linear function of distance along the streamline. Determine the acceleration at point A, B, and C. Assume steady flow.

ala .	
ชื่อ-สกล	١

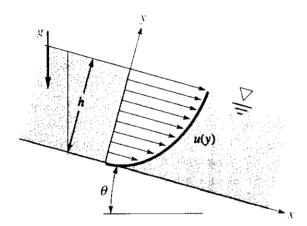
รหัส

section

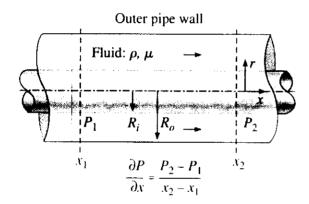
2) The stream function for an incompressible, two-dimensional flow field is

$$\psi = ay^2 - bx$$

where a and b are constants. Is this an irrotational flow? Explain.


લ	Q.	
ชื่อ-สกุล	รห์เ	a section

3) A two-dimensional incompressible flow is given by the velocity field $\mathbf{V} = 3y\mathbf{i} + 2x\mathbf{j}$, in arbitrary units. Does this flow satisfy continuity? If so, find the stream function $\psi(x, y)$ and plot a few streamlines.


4) A constant-thickness film of viscous liquid flows in laminar motion down a plate inclined at angle θ . The velocity profile is

$$u = Cy(2h - y) \qquad v = w = 0$$

Find the constant C in terms of the specific weight and viscosity and angle θ . Find the volume flux Q per unit width in terms of these parameters.

5) Consider steady, incompressible, laminar flow of a Newtonian fluid in an infinitely long round pipe annulus of inner radius R_i and outer radius R_o . Ignore the effects of gravity. A constant negative pressure gradient $\partial P/\partial x$ is applied in the x-direction, $(dP/dx) = (P_2 - P_1)/(x_2 - x_1)$, where x_1 and x_2 are two arbitrary locations along the x-axis, and P_1 and P_2 are the pressures at those two locations. The pressure gradient may be caused by a pump and/or gravity. Note that we adopt a modified cylindrical coordinate system here with x instead of z for the axial component, namely, (r, θ, x) and (u_r, u_θ, u) . Derive an expression for the velocity field in the annular space in the pipe.

