มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

การสอบกลางภาค ประจำภาคการศึกษาที่ 1 ประจำปีการศึกษา 2550 วันที่ 4 สิงหาคม 2550 เวลา 13.30-16.30 น. วิชา 215-391 Fundamental of Mechanical Engineering ห้อง A 401, A 403

Do all problems

الم	•
ชื่อ-สกุล	รหส

รศ.คร.ชูเกียรติ คุปตานนท์ ผู้ออกข้อสอบ

No.	Marks
1	
2	
3	
4	
5	
Total	

ทุจริตในการสอบ โทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

di di	به
ช้อ-สกุล	รหส

1. A small, thin metal plate of area A m² is kept insulated on one side and exposed to the sun on the other side. The plate absorbs solar energy at a rate of 500 W/m^2 and dissipates it by convection into the ambient air at 300 K with a convection heat transfer coefficient $20 \text{ W/(m}^2 \cdot ^{\circ}\text{C})$ and by radiation into a surrounding area which may be assumed to be a blackbody at $T_{sky} = 280 \text{ K}$. The emissivity of the surface is 0.9.

Determine the equilibrium temperature of the plate. [Stefan – Boltmann constant = $5.67 \times 10^{-8} \text{ W/m}^2 \text{ K}^4$]

Δ	n.
a a a a	ടയ്ക്ക്
ชอ-สกล	

- 2. A thermopane window consists of two 5-mm-thick sheets of glass separated by a stagnant air space of thickness 10 mm. The thermal conductivity of the glass is 0.78 W/(m . °C), and that of air is 0.025 W/(m . °C). The convection heat transfer coefficients for the inside and outside air are 10 W/(m^2 . °C) and 50 W/(m^2 . °C) , respectively.
 - (a) Determine the rate of heat loss per square meter of the glass surface for a temperature difference of 60°C between the inside and outside air.
 - (b) Compare the result with the heat loss if the window had only a single sheet of glass of thickness 5 mm instead of the thermopane.

ชื่อ-สกุล.....รหัส.......รหัส.......

- 3. A steel tube $[k = 15 \text{ W/(m} \cdot ^{\circ}\text{C})]$ of outside diameter 7.6 cm and thickness 1.3 cm is covered with and insulation material $[k = 0.2 \text{ W/(m} \cdot ^{\circ}\text{C})]$ of thickness 2 cm. A hot gas at 320°C with a heat transfer coefficient of $200 \text{ W/(m}^2 \cdot ^{\circ}\text{C})$ flows inside the tube. The outer surface of the insulation is exposed to cooler air at 20°C with a heat transfer coefficient of $50 \text{ W/(m}^2 \cdot ^{\circ}\text{C})$. Calculate
 - (a) the heat loss from the tube to the air for a 5-m length of the tube;
 - (b) the temperature drops due to the thermal resistances of the hot gas flow, the steel tube, the insulation layer, and the outside air.

4		ر. د
ชอ-สฤ)a	รหส

4. Determine the time required for a solid steel ball of radius 2.5 cm [k = 54 W/(m · °C), $\rho = 7833$ kg/m³, and $C_p = 0.465$ kJ/(kg · °C)] to cool from 850°C to 250°C if it is exposed to an air stream at 50°C having a heat transfer coefficient h = 100 W/(m² · °C).

d.	ov.
ชื่อ-สาล	รห์ส

5. A counter-flow heat exchanger is to be used to cool water from 22°C to 6°C, using brine entering at -2°C and leaving at 3°C. The overall heat transfer coefficient is estimated to be 500 W/m² °C. Calculate the heat transfer *surface area* for a design heat load of 10 kW.