คณะวิศวกรรมศาสตร์

มหาวิทยาลัยสงขลานครินทร์

การสอบกลางภาคการศึกษาที่ 1

รศึกษาที่ 1 ปีการศึกษา 2550

วันอาทิตย์ที่ 5 สิงหาคม 2550

วิชา: 235-320: Mineral Processing I

เวลา : 9.00-12.00 น.

ห้อง : A 303

คำชี้แจง

1. ข้อสอบมีทั้งหมด 8 ข้อ ให้ทำในกระดาษคำถามนี้ คะแนนทั้งหมดคิดเป็น 30 %

2. ห้ามนำเอกสารหรือตำราเข้าห้องสอบ

3. นำเครื่องคิดเลขเข้าห้องสอบได้

ทุจริตในการสอบโทษขั้นต่ำ คือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

	ชื่อรหัส	_
สูตรที่มีบ	<u>ระโยชน์</u>	
1.	S.E. = $R_m - R_g$, $R_m = 100 \text{ Cc/Ff}$, $R_g = 100 \text{ C(m-c)/(m-f)}$	
2.	% solids, $x = 100 S (D - 1000) / D (S - 1000)$	
3.	M = FDx	
4.	dilution ratio = $(100 - x)/x$	

ข้อ	คะแนนเต็ม	คะแนนที่ได้
1	10	
2	5	
3	5	
4	10	
5	5	
6	15	
7	20	
8	20	
รวม	90	

__ รศ.ดร.เล็ก สีคง

1. (10 marks/) Explain; 1.1 Separation efficiency	รหส
1.2 Enrichment ratio	
1.3 Ratio of concentration	
1.4 Recovery	
1.5 Economic efficiency	
1.6 Net smelter return (NSR)	
1.7 Assay	
1.8 Flowchart	
1.9 Circulating load ratio	
1.10 Flocculation	

برية			
รหส	 	 	

2. (5 marks/.....) Express the important factors those can influence on economic efficiency of mineral processing plant.

3. (5 marks/.....) Clearly elucidate the concept of mineral processing.

4. (10 marks/......) Slurry stream 1 containing fluorite mineral (density =3000 kg/m³) flows into a sump with the pulp density of 1500 kg/m³ and the flow rate of 1.0 m3/h. Stream 2 having a density of 1800 kg/m³ is pumped from the sump to the flotation plant. Calculate % solids by weight of both streams, the mass flow rate of dry solid in stream 1, the volumetric flow rate of slurry in stream 2 and the flow rate of the overflow water from a sump.

- 5. (5 marks/.....) In fluorite flotation plant, feed, concentrate and tailing contain 50, 90 and 0.1%CaF₂ respectively.
 - 5.1 Calculate amount of concentrate if feed rate is 100 t/h
 - 5.2 Estimate % recovery, enrichment ratio and ratio of concentration

٠			
รหส	 	 	

6. (15 marks/......) From the figure below, the mass of dry ore fed to flotation is 40 ton/h. The ball mill feed from ore bin contains 5 % moisture. The cyclone feed, underflow and overflow contain 35, 60, and 20% solids. Calculate the circulating load ratio on the circuit and the amount of water required to dilute the ball mill discharge.

-	
59821	
4 1 1 61	

7. (20 marks/...........) A mineral processing plant treats 300 tons of material during shift assaying 3 %Sn to produce a concentrate and tailing grades of 60%Sn and 0.1 % Sn respectively. Find the tonnage of concentrate and complete the metallurgical balance for shift 1 in table 1. Suppose that on the next shift 200 tons of 2.5% Sn material is treated to produce a concentrate and tailing grades of 70%Sn and 0.12%Sn respectively. Complete the metallurgical balance for this shift in table 2, combine shift 1 and 2 and estimate the theoretical and actual recoveries if 20.5 tons of the concentrate is weighed during 2 shifts.

ب	
59821	
a ri 61.	 •

Table 1 Shift 1 performance

Item	Weight, t	Assay, %Sn	Weight of tin, t	Distribution of Sn, %
Feed	300	3		
Conc.		60		
Tail		0.1		

Table 2 Shift 2 performance

Item	Weight, t	Assay, %Sn	Weight of tin, t	Distribution of Sn, %
Feed	200	2.5	·	
Conc.		70		
Tail		0.12		

Table 3 Combination of shift 1 and 2 performance

Item	Weight, t	Assay, %Sn	Weight of tin, t	Distribution of Sn, %
Feed				
Conc.				
Loss				
Tail				

8.	(20 marks/) Ores w	ere treated	by mineral	processing pilot
	plant and the following assa	y data was	collected:	

Feed:

0.5 % Sn, 1.0 % Pb, 1.50 % Zn

Sn concentrate:

45 % Sn, 0.5 % Pb, 3.40 % Zn

(Sn Recovery 80 %)

Pb concentrate:

0.05 % Sn, 60 % Pb, 3.00 % Zn

(Pb Recovery 90 %)

Zn concentrate:

0.01 % Sn, 1.5 % Pb, 50 % Zn

(Zn Recovery 70%)

•										
รหส	••	 	 ٠.	٠.	••	 		 	 	

8.1 Calculate the overall economic efficiency under the following simplified smelter terms

Cassiterite: Tin price: 200,000 Baht/ton

Smelter payment 99% of tin content

Smelter treatment charge: 400 Baht/ton conc.

Transport cost: 300 Baht/ton conc.

Galena: Lead price: 15,000 Baht/ton

Smelter payment: 90% of Pb content

Smelter treatment charge: 450 Baht/ton conc.

Transport cost: 300 Baht/ton conc.

Sphalerite: Zinc price: 30,000 Baht/ton

Smelter payment 85% of tin content

Smelter treatment charge: 500 Baht/ton conc.

Transport cost: 300 Baht/ton conc.

به			
รหส	 	 	

8.2 If the mining and other cost are 220 Baht/ton and milling cost is 140 Baht/ton, calculate the profit and overall effective cost.