มหาวิทยา**ลัยสงขลานครินทร์** คณะวิสวกรรมศาสตร์

สอบปลายภาค ประจำภาคการศึกษา 1	ปีการศึกษา 2550
วันที่ 12/10/ 2550	เวลา 9.00 —12.00 น.
วิชา 221-381: Computer Applications in Civil Engineering	
ห้องสอบ Robot's Head	
ชื่อ-สกลรหัสรหัส	

คำชื้แจง

- 1.ข้อสอบทั้งหมคมี 6 ข้อ คะแนนรวม 180 คะแนน ดังแสดงในตารางข้างล่าง
- 2.ข้อสอบมีทั้งหมด 3 หน้า (ไม่รวมปก)
- 3.ให้ทำหมดทุกข้อลงในสมุดคำตอบ
- 4.ห้ามนำเอกสารใดๆ เข้าห้องสอบ **ทุจริตจะได้ E**
- 5.อนุญาตให้ใช้เครื่องคิดเลขได้ทุกชนิด
- 6.กระคาษทคที่แจกให้ไม่ต้องส่งคืน ถ้าไม่พอขอเพิ่มที่อาจารย์คุมสอบ
- 7.ห้ามหยิบ หรือยืมสิ่งของใดๆ ของผู้อื่นในห้องสอบ
- 8. อนุญาตให้นำ Dictionary เข้าห้องสอบได้
- 9. **GOOD LUCK**

<u>ตารางคะแนน</u>

ข้อที่ คะแนนเต็ม		ได้
1	30	
2	30	
3	30	
4	30	
5	30	
6	30	
รวม	180	,

Asst. Prof. Dr. Suchart Limkatanyu

Problem 1 (30 Points)

Given data shown in the table below.

x	0	1	2	3	4	5
y	0	6.366	27.637	81.564	188.973	371.164

Fit a function $y = ax^3 + b \sin x$ to these data set with regression (Least Square) and estimate the value of y for x = 4.5.

Hint: You start from the definition of Least Square

Problem 2 (30 Points)

- (a) (10 Points) What is the definition of a cubic spline interpolation? Give a set of boundary conditions that can uniquely determine a cubic spline interpolation.
- (b) (10 Points) Fit data shown in Table of Problem 1 with first-order (linear) spline and evaluate the value of y for x = 4.5.
- (c) (10 Points) Fit data shown in Table of Problem 1 with the Lagrange Polynomial Interpolation and evaluate the value of y for x = 4.5.

Problem 3 (30 Points)

$$N(x) = \frac{x^2}{12} kips / in$$
 $A(x) = -\frac{x^2}{4000} + \frac{x}{60} + 2 in^2$ $E(x) = 30 \times 10^3 ksi$

The deformation of the axially loaded member shown above is completely defined by the differential equation:

$$\frac{\partial u}{\partial x} = \frac{N(x)}{A(x)E(x)}$$

where u is Axial Displacement; N(x) is axial force applied; E(x) is Young's modulus of elasticity; and A(x) is cross-sectional area.

Determine the relative displacement of Point A with respect to Point B if this problem can be easily solved by integrating the following expression:

$$u_A - u_B = \int_0^{120} \left(\frac{N(x)}{E(x)A(x)} dx \right)$$

- (a) Employ the Composite Trapezoidal Rule of Integration to perform this integration, using h = 10 in.
- (b) Employ the Composite Simpson's 1/3 Rule of Integration to perform this integration, using h = 30 in.

Trapezoidal Rule:

$$I = (x_{i+1} - x_i) \left[\frac{f(x_{i+1}) + f(x_i)}{2} \right]$$

Simpson's 1/3 Rule:

$$I = (x_{i+2} - x_i) \left[\frac{f(x_i) + 4f(x_{i+1}) + f(x_{i+2})}{6} \right]$$

3

Problem 4 (30 Points)

Evaluate the following integral using the three Gauss points.

$$I = \int_{0}^{4} e^{x} dx$$

Given that:

Gauss Point [-1,1]	Weighting Factors
$x_1 = -0.774596669$	$c_1 = 0.555555556$
$x_2 = 0.000000000$	c ₂ = 0.888888889
$x_3 = 0.774596669$	c ₃ = 0.55555556

Problem 5 (30 Points)

Find the formula

$$\int_{-1}^{1} f(x) dx \approx A_0 f(0) + A_1 f(1)$$

That is exact for all functions of the form:

$$f(x) = ae^x + b\cos\left(\frac{\pi x}{2}\right)$$

where a and b are constants.

Problem 6 (30 Points)

- (a) What is major difference between the Regression and Interpolation?
- (b) What is the main advantage of the Spline interpolation scheme?
- (c) What is the main feature of the Lagrange Polynomial?