amrInndsaanmua und
angienssuamand MAElInTsNAaNRIneT
fospuamsmamiitnmi 1 dsziiimadnm 2550
Suerindit 7 qaiau w.a. 2550 na1 13.30 - 16.30 w.
311 240-204 way 241-207 Data Structure and Computer Programming Techniques visvgau R200, R201

flaaauiiviavug 10 o 10 wih (3auwvhil) samasunn 47 azuun iviynile
Tiaynpaliinaiesdawmsuasianaislay Wivissaay

Taousmuaslufioaan winddhehinellifufidundiadoiugwiniu

L

L]

o Bidouda-wmana uasrwatndnmlinnui

o

o inszauma 1 win agdundsiieasy eyanalidsesnld wimrrefliliioasufnosnindy
L

auqna i ifauaenaudionnld

BOUINANA. o evove et TRAENANE.

ASHUY

Slolo|valuslwlol-| S

I

BOWIHEAN . cerereeerreerecerresecrcerenseee st o eraacmssesnsnassaas e renses SHAENANE L o nesrenenne

o

datmemsiinuiaiduiididio

L4
Function: int fclose (FILE *stream) is declared in stdio.h.
This function causes stream to be closed and the connection to the corresponding file to be broken. Any buffered
output is written and any buffered input is discarded. The fclose function returns a value of @ if the file was closed
successfully, and EOF if an error was detected.

It is important to check for errors when you call fc¢lose to close an output stream, because real, everyday errors
can be detected at this time. For example, when fclose writes the remaining buffered output, it might get an error
because the disk is full. Even if you know the buffer is empty, errors can still occur when closing a file if you are
using NFS.

To close all streams currently available the GNU C Library provides another function.

Function: FILE * fopen (const char *filename, const char *opentype) is declared in stdio.h.
The fopen function opens a stream for I/O to the file filename, and returns a pointer to the stream.

The opentype argument is a string that controls how the file is opened and specifies attributes of the resulting
stream. It must begin with one of the following sequences of characters:

‘r' Open an existing file for reading only.

'w' Open the file for writing only. If the file already exists, it is truncated to zero length. Otherwise a new file is
created.

‘a’ Open a file for append access; that is, writing at the end of file only. If the file already exists, its initial contents
are unchanged and cutput to the stream is appended to the end of the file. Otherwise, a new, empty file is created.

“r+' Open an existing file for both reading and writing. The initial contents of the file are unchanged and the
initial file position is at the beginning of the file.

‘wt+' Open a file for both reading and writing. If the file already exists, it is truncated to zero length. Otherwise, a
new file is created.

“a+' Open or create file for both reading and appending. If the file exists, its initial contents are unchanged.
Otherwise, a new file is created. The initial file position for reading is at the beginning of the file, but output is
always appended to the end of the file.

As you can see, '+ requests a stream that can do both input and output. The ISO standard says that when using
such a strearn, you must call fflush (see Stream Buffering) or a file positioning function such as fseek (see File
Positioning) when switching from reading to writing or vice versa. Otherwise, internal buffers might not be emptied
properly. The GNU C library does not have this limitation; you can do arbitrary reading and writing operations on a
stream in whatever order.

Additional characters may appear after these to specify flags for the call. Always put the mode (', “w#', etc.)
first; that is the only part you are guaranteed will be understood by all systems.

The GNU C library defines one additional character for use in opentype: the character " x' insists on creating a new
file—if a file filename already exists, fopen fails rather than opening it. If you use " x' you are guaranteed that you
will not clobber an existing file. This is equivalent to the 0_EXCL option to the open function (see Opening and_
Closing Files).

The character “b' in opentype has a standard meaning; it requests a binary stream rather than a text stream. But
this makes no difference in POSIX systems (including the GNU system). If both “+' and "b' are specified, they can
appear in either order. See Binary Streams,

If the opentype string contains the sequence , ccs=STRING then STRING is taken as the name of a coded character
set and fopen will mark the stream as wide-oriented which appropriate conversion functions in place to convert
from and to the character set STRING is place. Any other stream is opened initially unoriented and the orientation
is decided with the first file operation. If the first operation is a wide character operation, the stream is not only
marked as wide-oriented, also the conversion functions to convert to the coded character set used for the current
locale are loaded. This will not change anymore from this point on even if the locale selected for the LC_CTYPE
category is changed.

Any other characters in opentype are simply ignored. They may be meaningful in other systems.
If the open fails, fopen returns a nuil pointer.

When the sources are compiling with _FILE_OFFSET_BITS == 64 on a 32 bit machine this function is in fact
fopen64 since the LFS interface replaces transparently the old interface.

You can have multiple streams (or file descriptors) pointing to the same file open at the same time. If you do only

minlumrasy Tnefumds tfuanlunsiniyde uasinmadon 1 mamsdnm 2

BB WU B rrrerrecr oot ses e s st en s SHAENANY et

input, this works straightforwardly, but you must be careful if any output streams are inciuded. See
Stream/Descriptor Precautions. This is equally true whether the streams are in one program (not usual) or in
several programs {which can easily happen). It may be advantageous to use the file locking facilities to avoid
simultaneous access. See File Locks.

Function: int fprintf (FILE *stream, const char *template, ...) is declared in stdio.h.
This function is just like printf, except that the output is written to the stream stream instead of stdout,.

Function: int fpute (int ¢, FILE *stream) is declared in stdio.h.‘
The fputc function converts the character ¢ to type unsigned char, and writes it to the stream stream. EQF is
returned if a write error occurs; otherwise the character ¢ is returned.

Function: int fputs {const char *s, FILE *stream) is declared in stdio.h.
The function fputs writes the string s to the stream stream. The terminating null character is not written. This
function does not add a newline character, either. It outputs only the characters in the string.

This function returns EOF if a write error occurs, and otherwise a non-negative value. For example:

fputs ("Are ", stdout);
fputs {"you ", stdout);
fputs {"hungry?\n", stdout);

outputs the text "Are you hungry?' followed by a newline.

Function: size t fread (void *data, size_i size, size_t count, FILE *stream) is declared in stdio.h.
This function reads up to count objects of size size into the array data, from the stream stream. It returns the
number of ahjects actually read, which might be less than count if a read error occurs or the end of the file is
reached. This function returns a value of zero {and doesn't read anything) if either size or count is zero.

If fread encounters end of file in the middle of an object, it returns the number of complete objects read, and
discards the partial object. Therefore, the stream remains at the actual end of the file.

Function: int fscanf (FILE *stream, const char *template, ...) is declared in stdio.h.
This function is just like scanf, except that the input is read from the stream stream instead of stdin.

Function: int fseek (FILE *stream, long int offset, int whence) is declared in stdio.h.
The fseek function is used to change the file position of the stream stream. The value of whence must
be one of the constants SEEK_SET, SEEK_CUR, or SEEK_END, to indicate whether the offset is relative to
the beginning of the file, the current file position, or the end of the file, respectively.

This function returns a value of zero if the operation was successful, and a nonzero value to indicate
failure. A successful call also clears the end-of-file indicator of stream and discards any characters that
were “pushed back” by the use of ungetc.

fseek either flushes any buffered output before setting the file position or else remembers it so it will
be written later in its proper place in the file,

Function: size_t fwrite (const void *data, size_t size, size_t count, FILE *stream) is declared in stdio.h.
This function writes up to count objects of size size from the array data, to the stream stream. The return value is
normally count, if the call succeeds. Any other value indicates some sort of error, such as running out of space.

Function: int printf (const char *template, ...) is declared in stdio.h.
The printf function prints the optional arguments under the control of the template string template to the stream
stdout. It returns the number of characters printed, or a negative value if there was an output error.

Function: int putc (int ¢, FILE *stream} is declared in stdio.h.
This is just like fputc, except that most systems implement it as a macro, making it faster. One consequence is that
it may evaluate the stream argument more than once, which is an exception to the general rule for macros. putc is
usually the best function to use for writing a single character.

Function: int puts (const char *s) is declared in stdio.h.
The puts function writes the string s to the stream stdout followed by a newline. The terminating null character of
the string is not written. (Note that fputs does not write a newline as this function does.)

puts is the most convenient function for printing simple messages. For example:
puts ("This is & message.");
outputs the text "This is a message.' followed by a newline.

Function: int scanf (const char *template, ...) is declared in stdio.h.
The scanf function reads formatted input from the stream stdin under the control of the template string

yadnlumrasy Ineudide tuenluneindyata uaswamadon 1 mamsdnm 3

BO-UIHANA. oo rese et mense s s s THARNANE Y e

template. The optional arguments are pointers to the places which receive the resulting values.

The return value is normally the number of successful assignments. If an end-of-file condition is detected before any
matches are performed, including matches against whitespace and literal characters in the template, then EQOF is
returned.

Function: int sprintf (char *s, const char *template, ...) is declared in stdie.h.
This is like printf, except that the output is stored in the character array s instead of written to a stream. A null
character is written to mark the end of the string.

The sprintf function returns the number of characters stored in the array s, not including the terminating null
character.

The behavior of this function is undefined if copying takes place between objects that overlap—for example, if s is
also given as an argument to be printed under control of the “%s' conversion.

Warning: The sprintf function can be dangerous because it can potentially output more characters than can fit
in the allocation size of the string s. Remember that the field width given in a conversion specification is only a
minimum value.

To avoid this problem, you can use snprintf or asprintf, described below.

Function: int sscanf (const char *s, const char *template, ...} is declared in stdio.h.
This is like scanf, except that the characters are taken from the null-terminated string s instead of from a stream.
Reaching the end of the string is treated as an end-of-file condition.

The behavior of this function is undefined if copying takes place between objects that overlap—for example, if 5 is
also given as an argument to receive a string read under control of the “%s', *%S', or %' conversion.

Function: int stremp (const char *s1, const char *s2) is declared in string.h.
The strcmp function compares the string s1 against 52, returning a vaiue that has the same sign as the
difference between the first differing pair of characters (interpreted as unsigned char objects, then
promoted to int).

If the two strings are equal, strcmp returns 9.

A consequence of the ordering used by strcmp is that if 51 is an initial substring of s2, then s1 is considered
to be “less than” s2.

strcmp does not take sorting conventions of the language the strings are written in into account, To get that
one has to use strcoll.

Function: char * strcpy {char *restrict to, const char *restrict from) is declared in string.h.
This copies characters from the string from (up to and including the terminating null character) into the
string fo. Like memcpy, this function has undefined results if the strings overlap. The return value is the
value of to.

Function: size_t strlen (const char*s) is declared in string.h.
The strlen function returns the length of the null-terminated string s in bytes. (In other words, it returns
the offset of the terminating null character within the array.} For example,

strien ("hello, world")
= 12

When applied to a character array, the strlen function returns the length of the string stored there, not its
allocated size. You can get the allocated size of the character array that holds a string using the sizeof
operator:

char string[32] = "hello, world";
sizeof (string)

=> 32
strien {string)

== 12

But beware, this will not work unless string is the character array itself, not a pointer to it. For example:

char string[32] = "hello, world";
char *ptr = string;
sizeof (string)
=> 32
sizeof (ptr)
=>4 /[* {on a machine with 4 byte pointers) */

yainlumsasy Inwiudife tiuanlusigindiyaie uasinmndon 1 mamsdnm 4

BOWIHAN A eererrceecrerrenesessereesmreeeressesssbsenes s s e esssssssssarsbans TRAWNTNE Y s

This is an easy mistake to make when you are working with functions that take string arguments; those
arguments are always pointers, not arrays.

It must also be noted that for multibyte encoded strings the return value does not have to correspond to the
number of characters in the string. To get this value the string can be converted to wide characters and
wcslen can be used or something like the following code can be used:

/* The input is in string. The length is expected in n. */
{

mbstate_t t;

char *scopy = string;

/¥ In initial state. */

memset (&t, '\@', sizeof (t}};

/* Determine number of characters. */

n = mbsrtowcs (NULL, &scopy, strlen (scopy), &t);
}

This is cumbersome to do so if the number of characters (as opposed to bytes) is needed often it is better to
work with wide characters.

L4
nadau
1. mnviisyaveatndnmfiFuwinmuils Afoyaitindudoadulifie siadndnm @rzneuldviiammiad

Snws 10 ndn), asunusan wazinta suduulassafrefioyail lnodmualilize nfo wienmasinumeua
Usznon (1 asunu, 2 win)

[struct Info { deno:

}

2. ninlavea¥efiaya Info madasmsiAuioyatndnemaroganluuuy List uas Tree lassafnioyasowdazlnua
mrazdluadnly 1ﬂﬂiqa§10ﬁagmmu List 80 InfoList uasuuy Tree 89 InfoTree (2 Azuun, 4 wai)

thct InfolList { struct InfoTree { —’

yataimrasy Inwfiudds tfuanlunviniyide wesinmsdox 1 mamsdnm 5

BOUIMUAND .ottt esses s saa s TWARDAN Y oo

3. minlassadetiaya InfoList andsusaftudmininioyadovhe List idmualk Jfmsassmisanudiln) uas
f List fimualiiidniln NULL dlosfiuaumsiouuds sumiamas List fdivuali ssdoegaisdouliih
fifayalnaifiafiu laslvifedoilaiiuiiu Listadd wasnmBonlaedonlidil @ asunu, 12 wii)

struct InfoList *head = NULL;
ListAdd(&head, sWawnfin®, ASUUUTIN, 1N5A);

wialumiaoy lnwdudidie tivmnluniminade ussiinmrdon 1 mamydnm 6

B VN es s cecerae st e es st enarese b rans THAWATNE e

4. sufowiliduiiimasumioyalu List udasluuaillassaiiodu InfoList Taslfsifaitndnendudmanlums
Fum uaslidumun Linear Search Taufiiedfuita return ddumisnasdayaiiduny srnndumbing 14
return atilu NULL (3 asuun, 6 w1i)

5. nnlassaifioya InfoTree audoursdtudwiuinioyadrlulu Tree iiuualfluuuy Binary Search Tree (
Umsreambsanuilni) lasliliswadndnsndunanlumsimyonain Tree uazé1 Tree fidmualvidldnily

NULL le#efifuaumsinuudy dunsisros Tree imald awdosgnuFanlidluiitayalusisiasetin ol
Fadorlanduidiu IDBSTAdd wasnan@onls axdunlidi (5 azuun, 15 wifl)

struct InfoTree *root = NULL;
IDBSTAdd(&root, sHanndn®l, AunuIIN, tna);

ya3alumsaey Inududde Wuanlunimilyie uasinmsdon 1 manniam 7

BB WIMANA e sssnssssss s sressiens FWANDA N e cre s

6. warniduidanlmaseninbinaunasluua i uusumwdnulivuy BST (1 asuuu, 1 i)

» @
& O O

Q) & @

watuaasmasnidtadonlfanfuidnlilu BST touansnamudasivuamsizmiudasuuy (3 asunn, 6 wii)

Pre-order:

In-order:

Post-order:

7. aaffawlasiiaiiin preorder print doluit Wiflu In-order traversal dm¥ulaseainioya InfoTree ludio 2

void preorder print(TREE t) {
if (MisEmptyTree(t)) {
printf(“%3d”, value(t)); preorder print(IsTree(t)); preorder print{rsTree(t));
}

uasunufiazuaasnamisadlie budnuiwisusimunadlid dedeyaudaslmualulia sedosmmnsodmniumn
vy . o 1 o 1 . = - YAy P e
Ieisiaamda fread) Tanliitanduildod InOrderWrite uasfigunimsdunlidadrogiefineareil (5 azunn, 15 wii)

InOrderWrite(iumisnas root Tuua, falWd);

yaalumsaey Inwiudde Uumnlunsinilyde uasinmndon 1 mamsdnw 8

BB UANTN . eeveeeeeeeaeensasasassssnssssssssa st FWARNTANE. e

v v . ' 4 v ' w [o <
8. nnilafdudumieyalulaseasrefioyaun Binary Search Tree dioliit iilahimiGundiowdazafnFouaiion
w iU ' ' [¢ s o v &
mymdmitafs washitumsasaaeuluainiin empty muandabi aliamstanafudanrofiimsdumunyi

int BSTSearch(int key, BST t) {
int v;
if (isEmptyTree(t))
return 0;
v = value(t);
if (key ==v)
return 1;
else if (key < v}
return bstsearch(key, 1sTree(t));
else if (key > v)
return bstsearch(key, rsTree(t));
hy

Best Case fansoin (1 azuni, 1 wif)

Coin = (1 azuun, 1 w1i)

Worst Case Aonsdii#i (3 Azuun, 6 wif)

Coax = (2 azuuu, 4 wi)

dilfioyasgiianun 3 Tuua juuuummnBonlos Tree Miluldmuaiidnymedoplinedni lumsdumudmuioya
filwua 1 wie 2 wla 3 AziiimanaflumsuBuunisuiuandaiull

OIS © @/® @
@/@/ @\@ l© @b @@@

Snounsdiidumudmuioyait Taua 1 = Twua 2= Tua 3 = Taiwu =

‘nmﬂun‘sﬁﬂumimﬁagaﬁwuﬂ = (2 asuny, 4 i)
anauafelumyBouifioufeyafonun = (2 azunu, 4 Ka)
auadurasrinnuad lumsaRoudog (Caverage) = (1 Asuuu, 2 W)

yaialumyaen Inwiudide Uuanlunoimiinada uassinmadow 1 mansdnmn 9

BOUIHATIA e cevveereenrmermsesmres s nsr st s bbb snes s FWHWNANM L . ovvvoiveeniesercsnreeeseecsenmeenerenserenes

ar v 3 - o ¥ ¥ [L .
9. mm*ﬁ’nﬂauﬂaqmmumﬁaga’lu Binary Search Tree luiio 8 ﬁummumnaga’lumﬁﬂuuu Binary Search
wilou wiemuiundali adnls (2 asuun, 6 wii)

L. 1) ar & w =4 LI dl : M L - B 1 = 1 1]
10.?!1nmwunagamamﬂumsw Ntﬂuumﬂumﬂ?\uuvlﬂ'lmmaz‘samlaqnﬁ'-mﬁu\magaﬂ’lmﬁn‘li SOrt UUUANT 114
Selection Sort, Insertion Sort, Bubble Sort wiu native, Bubble Sort wul improve, uay Quick Sort Taaliden
laildiviunitaiigen 35% lnolklageid ifisoswmuugarems GRaz 3 = 9 azuuw, 18 wifl)

1038

7,52,9416,0,3,8 (7,52,9416,0,3,8 7,52,941,6,03,8

=

ot
wloluvo ulselw o~ B

e e e e I ey
ST R W N =IO

yazalunsdey nwdudds tfuanlusnodmingda uasiinmadon 1 mamadnm 10

