PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Academic Year: 2007

Final Examination: Semester I

Date: 10 October 2007	Time: 9:00-12:00
Subject: 240-552 Digital Signal Processing	Room: A401
Instructions:	
This exam has 7 problems, 10 pages and 95 pfull credit. You may use the back of the pages for so and closed note. You are allowed to bring in a calculation of the pages for so and closed note.	cratch work. This exam is <u>closed book</u>
Name:	Student code:
1 (10 pts)	5 (10 pts)
2 (25 pts)	6 (10 pts)
3 (10 pts)	7 (10 pts)
4 (20 pts)	
	TOTAL

ทุจริตในการสอบ โทษชั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา 1. Sketch the frequency response of the following systems: (10 points)

System I
$$H(z) = \frac{z}{z - 0.1}$$

System II
$$H(z) = \frac{1 - 0.7z^{-1}}{(1 - (0.4 - j0.2)z^{-1})(1 - (0.4 + j0.2)z^{-1})}$$

2. Sketch (in s-plane) poles and zeros of a continuous-time Butterworth filter whose order is 5 and cut-off frequency = 0.3 rad./sec. (5 points)				
If the continuous-time filter is transformed to a discrete-time filter using the impulse invariance method (T=1), where are the poles in the z-domain? (10 points)				
If the continuous-time filter is transformed to a discrete-time filter using the bilinear transform method (T=1), where are the poles in the z-domain? (10 points)				

3. Let $x[n] = \{1 \ 2 \ 3 \ 4\}$ and $y[n] = \{-1 \ 1 \ 0 \ -1\}$, compute the circular convolution of the two sequences. (10 points)

4. Given the two finite-length sequences x[n] and y[n] as defined below: (10 points)

$$x[n] = \cos\left(\frac{\pi n}{2}\right) \qquad n = 0,1,2,3$$
$$y[n] = \frac{n}{4} \qquad n = 0,1,2,3$$

$$y[n] = \frac{n}{4}$$
 $n = 0,1,2,3$

- a) Compute the DFT of the two sequences (10 points)
 b) If Z[k] = X[k]Y[k], determine z[n] (10 points)

5. Design a discrete-time Butterworth low-pass filter with the following specifications:

Passband frequency $0.4\pi \text{ rad./sec.}$ Stopband frequency $0.7\pi \text{ rad./sec.}$

Max. passband attenuation 1 dB Min. stopband attenuation 30 dB

Determine poles and zeros of the discrete-time filter, assuming that the bilinear

transform method was used (T=1). (10 points)

6. Prove that F(F(x[n])) = x[-n], where F(.) is the Discrete Fourier Transform. (10 points)

7. Show or prove that FIR filters always have a linear phase response (10 points)