Name	Student ID
1 141110	

Prince of Songkla University Department of Industrial Engineering, Faculty of Engineering

Final Examination: Semester 1

Academic Year: 2007

Date: 1 October 2006

Time: 09:00 - 12:00

Subject: 225-502 Experimental Designs

Room: A400

ทุจริตในการสอบ โทษขั้นต่ำ คือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียนหนึ่งภาคการศึกษา

Instructions: Read carefully

1. All materials are allowed.

- 2. There are 6 problems, do all of them. Also show your work clearly and legibly.
- 3. Answer the questions in this test paper, only.
- 4. You must write your name and your student ID in every page of the test.
- 5. Total score is 110 points.

Distribution of Score

Problem	Points	(a)	(b)	(c)
1	20	8	12	-
2	20	8	12	-
3	15	-	-	•
4	15	-	-	-
5	15		-	-
6	25	-	-	-

Tests are prepared by Nikorn Sirivongpaisal

Name	Student ID
Name	Smaent II 3
1 141110	Ottaviit ID

Problem 1: (20 points) An experiment was performed to improve the yield of a chemical process. Four factors were selected, and two replicates of a completely randomized experiment were run. The results are shown in the following table:

Treatment	Replicate		Treatment	Replicate	
Combination	I	II	Combination	I	II
(1)	90	93	d	98	95
а	74	78	ad	72	76
b	81	85	bd	87	83
ab	83	80	abd	85	86
c	77	78	cd	99	90
ac	81	80	acd	79	75
bc	88	82	bcd	87	84
abc	73	70	abcd	80	80

⁽a) Consider the data from the first replicate and construct a design with four blocks by confounding ABC and ABD with blocks.

Name	Student ID	
Name .	Student ID	

(b) Prepare an analysis of variance table from the design in problem (a), and determine which factors are important to the yield of a process. Use $\alpha = 0.05$.

Name	Student ID

Problem 2: (20 points) Consider the following data from a specific experiment.

(- 1 /		O	1
(1) = 7	d = 8	e=8	de = 6
a = 9	<i>ad</i> = 10	ae = 12	ade = 10
b = 34	<i>bd</i> = 32	be = 35	bde = 30
ab = 55	abd = 50	abe = 52	abde = 53
c = 16	<i>cd</i> = 18	ce = 15	<i>cde</i> = 15
ac = 20	acd = 21	ace = 22	acde = 20
bc = 40	bcd = 44	bce = 45	bcde = 41
abc = 60	abcd = 61	abce = 65	abcde = 63

⁽a) Construct a fractional factorial 2_{III}^{5-2} design with I = ABD and I = BCE.

⁽b) Prepare an analysis of variance table from the design in problem (a), and determine which factors are important to the response variable. Use $\alpha = 0.05$.

Name	Student ID
11ano	Statent 1B

Problem 3: (15 points) A manufacturing engineer is studying the dimensional variability of a particular component that is produced on three machines. Each machine has two spindles, and four components are randomly selected from each spindle. The results follow. Analyze the data, assuming that machines and spindles are fixed factors. Use $\alpha = 0.05$.

	Macl	nine 1	Mach	ine 2	Macl	ine 3
Spindle	1	2	1	2	1	2
	12	8	14	12	14	16
	9	9	15	10	10	15
	11	10	13	11	12	15
	12	8	14	13	11	14

Nama	Student ID
Name	Student ID

Problem 4: (15 points) An engineer is studying the effect of cutting speed on the rate of metal removal in a machining operation. However, the rate of metal removal is also related to the hardness of the test specimen. Five observations are taken at each cutting speed. The amount of metal removed (y) and the hardness of the specimen (x) are shown in the following table. Analyze the data using an analysis of covariance. Use $\alpha = 0.05$.

	_	Cutting Sp	peed (rpm)		
_10	00	12	00	14	00
у	x	у	x	У	x
68	120	112	165	118	175
90	140	94	140	82	132
98	150	65	120	73	124
77	125	74	125	92	141
88	136	85	133	80	130

Name	Student ID

Problem 5: (15 points) The data from experimental design is shown in the following table.

x_1	x_2	у
-1	-1	54
-1	1	45
1	-1	32
1	1	47
0	0	41
0	0	39
0	0	44
0	0	42
0	0	40

Analyze the data to check whether there is significant effect from curvature. Use $\alpha = 0.10$.

Problem 6: (25 points) The data from experimental design is shown in the following table.

x_1	x_2	<i>x</i> 3	y
-1	-1	-1	66
-1	-1	1	70
-1	1	-1	78
-1	1	1	60
1	-1	-1	80
1	-1	1	70
1	1	-1	100
1	1	1	75
-1.682	0	0	100
1.682	0	0	80
0	-1.682	0	68
0	1.682	0	63
0	0	-1.682	65
0	0	1.682	82
0	0	0	113
0	0	0	100
0	0	0	118
0	0	0	88
0	0	0	100
0	0	0	85

And the output analysis is also shown in the following section.

Response					•				
	ANOVA for Response Surface Quadratic Model Analysis of variance table [Partial sum of squares]								
Zinarysis	Sum of Mean F								
Source	Square	s DF	Square	Value	Prob > F				
Model	3662.00	9	406.89	2.19	0.1194				
\boldsymbol{A}	22.08	1	22.08	0.12	0.7377				
B	25.31	1	25.31	0.14	0.7200				
C	30.50	1	30.50	0.16	0.6941				
$C \atop A^2$	204.55	1	204.55	1.10	0.3191				
B^2	2226.45	1	2226.45	11.96	0.0061				
C^{2}	1328.46	1	1328.46	7.14	0.0234				
AB	66.12	1	66.12	0.36	0.5644				
AC	<i>55.13</i>	1	55.13	0.30	0.5982				
BC	<i>171.13</i>	1	171.13	0.92	0.3602				
Residual	1860.95	10	186.09						
Lack of Fit	1001.61	5	200.32	1.17	0.4353				
Pure Error	859.33	5	171.87						
Cor Total	5522.95	19							
Std. Dev.	13.64	R-	Squared	0.663	1				
Mean	83.05	Adj R-Squ	•	0.3598					
C.V.	16.43	Pred R-Squ		-0.6034					
PRESS	8855.23	Adeq Precision		3.882					

Page 10 of 12

objective is to maximize the response variable y.

- N I	~~~	
- 1	aii.	c

Factor	Coefficient Estimate	DF	Standard Error	95% CI Low	95% CI High	VIF
Intercept	100.67	1	5.56	88.27	113.06	
A-x1	1.27	1	3.69	-6.95	9.50	1.00
B-x2	1.36	1	3.69	-6.86	9.59	1.00
C-x3	-1.49	1	3.69	-9.72	6.73	1.00
A^2	-3.77	1	3.59	-11.77	4.24	1.02
B^2	-12.43	1	3.59	-20.44	-4.42	1.02
C^2	-9.60	1	3.59	-17.61	-1.59	1.02
AB	2.87	1	4.82	-7.87	13.62	1.00
AC	-2.63	1	4.82	-13.37	8.12	1.00
BC	-4.63	1	4.82	-15.37	6.12	1.00

Response	Yield							
ANOVA for Response Surface Reduced Quadratic Model								
Analysis of variance table [Partial sum of squares]								
	Sum of		Mean	F				
Source	Squares	DF	Square		Prob > F			
Model	3143.00	4	785.75	4.95	0.0095			
В	25.31	1	25.31	0.16	0.6952			
C	30.50	1	30.50	0.19	0.6673			
B^2	2115.31	1	2115.31	13.33	0.0024			
C^2	1239.17	1	1239.17	7.81	0.0136			
Residual	2379.95	15	158.66					
Lack of Fit	1520.62	10	152.06	0.88	0.5953			
Pure Error	<i>859.33</i>	5	171.87			31		
Cor Total	5522.95	19						
Std. Dev.	12.60	R-	Squared	0.569	1			
Mean	83.05 A	dj R-Squ	ared	0.4542				
C.V.	15.17 Pi	red R-Sqi	uared	0.1426				
PRESS	4735.52 A	deq Prec	ision	5.778				
	Coefficie	nt	Standaı	rd 95% (CI 95% CI			
Factor	Estimat	e DF	Error	Low	High	VIF		
Interce			4.36	88.29	9 106.88			
B-x	2 1.36		3.41	-5.90	8.63	1.00		
C-x		1	3.41	-8.76	5.77	1.00		
	$3^2 -12.06$	1	3.30	-19.09	-5.02	1.01		
	$c^2 - 9.23$	1	3.30	-16.20	-2.19	1.01		

Use the provided information to find the operating conditions, in term of x_1 , x_2 , and x_3 if the objective is to maximize the response variable y.