Name	ID	

Prince of Songkla University Faculty of Engineering

Final Examination
9 October 2007

Semester 1/2550 Time 13:30-16:30

215-342 MECHANICS OF FLUIDS II

Room: A400, A403

Directions

- This is close book examination.
- A4 is allowed one sheet (2 side) and hand-writing only.
- Dictionary is permitted.
- Calculator is permitted.
- Attempt all 5 questions.

Kittinan Maliwan Juntakan Taweekun

Instructor

Question	Marks	
1	10	
2	15	
3	15	
4	10	
5	15	
Total	65	

Name		
ID		

Name	ID	

1. Consider the following steady, two-dimensional, incompressible velocity field.

$$\mathbf{V} = (\mathbf{u}, \mathbf{v}) = (ax + b)\mathbf{i} + (-ay + c)\mathbf{j}$$

Where a, b and c are constants. Is this flow fluid irrotational? If so, generate an expression for the velocity potential function. (10 Marks)

2. A laminar flow wind tunnel has a test section that is 40 cm. in diameter and 60 cm. in length. The air is 20 °C ($\nu = 1.516 \times 10^{-5} \text{ m}^2/\text{s}$). At a uniform air speed of 2 m/s at the test section inlet, how much will the centerline air speed accelerate by the end of the test section? Define all assumptions. (15 Marks)

Name	II	D	

3. An irrotational region of flow is formed by superposing a line source of strength $q_1 = 3$ m²/s at (x, y) = (0, -2); a line source of strength $q_2 = -2$ m²/s at (x, y) = (2, -2); and a line vortex of strength $\Gamma = 2$ m²/s at (x, y) = (2, 2), where all spatial coordinates are in meters. [source number 2 is actually a sink, since q_2 is negative.]. Calculate the fluid velocity at the point (x, y) = (2, 0) and draw the resultant vector. (15 Marks)

Na	meID
4.	Explain the following words in details (10 Marks)
4.1	Displacement Thickness (δ*)
•••	
4.2	2 Static Pressure
• • •	
4.3	3 Stagnation Pressure
•••	
• • •	
• • •	
4.4	4 Irrotational Flow Region
• • •	

Name		${ m ID}$	

- 5. Air at 20 °C ($\upsilon = 1.516 \text{ x } 10^{-5} \text{ m}^2/\text{s}$) flows at V = 11 m/s over a smooth flat plate of length L = 1.52 m. (15 Marks)
- 5.1 Compute laminar and turbulent boundary layer thickness at the end of a flat plate.
- 5.2 Calculate local skin friction coefficient $(C_{f,x})$ for two cases at x = L
- Plot and compare the growth of the laminar and turbulent boundary in wording $(x \text{ in } x\text{-axis} \text{ and } \delta \text{ in } y\text{-axis})$