Prince of Songkla University

Faculty of Engineering

Midterm Examination: Semester II

Academic Year 2007

Saturday, January 5, 2008

Time 13:30-16:30

220-506 Stability of Structures

Room R300

Instructions.

- 1. There are 3 questions which marks are shown in the questions.
- 2. Attempt all questions.
- 3. Books and notes are allowed.
- 4. Pencils are recommended to be used in answering the questions.

Instructor: Fukit Nilrat

- 1. (20 marks) Find the critical load P_{cr} of the rigid bar-spring system shown in Fig. 1.
- 2. (30 marks) Find the critical load P_{cr} of the column shown in Fig. 2 by using the second-order differential equation.
- 3. (30 marks) For the beam-column shown in Fig. 3.1, the deflection equations are given as

$$y(x) = \frac{Q}{GI\lambda^3} \frac{\sin \lambda(L-a)}{Ain\lambda L} \sin \lambda x - \frac{Q(L-a)}{LEI\lambda^2} \times$$
 for $0 \le x \le a$.

$$y(x) = -\frac{Q}{EI\lambda^3} \frac{\sin \lambda a}{\tan \lambda l} \sin \lambda x + \frac{Q \sin \lambda a}{EI\lambda^3} \cos \lambda x - \frac{Q q(l-x)}{LEI\lambda^2} \quad \text{for } a \le x \le l$$

For the beam-column shown in Fig. 3.2

- (a) Determine the maximum deflection y_0 for the beam-column shown in Fig. 3.2 when the axial load P = 0.
- (b) The maximum deflection y_{max} for the beam-column shown in Fig. 3.2 when the axial load P is present can be expressed as $y_{max} = y_o A_F$. By using the principle of superposition, find the deflection amplification factor A_F in terms of u where $u = \lambda l/2$.

