PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Academic Year: 2007

Midterm Examination: Semester II

Date: 5 January 2008 Subject: 240-650 Principles of Pattern Recognition	Time: 13:30-16:30 Room: R201
Instructions:	
This exam has 5 problems, 12 pages and 77 points. pages for scratch work. This exam is open books and notes calculator.	
Name I	D

"ทุจริตในการสอบ โทษขั้นต่ำ คือ พักการเรียน 1 ภาคการศึกษา และปรับตกในรายวิชาที่ทุจริต'

1. Find the eigenvalues and eigenvectors of matrix A, where $A = \begin{bmatrix} 5 & -2 \\ 5 & 1 \end{bmatrix}$ (10 poin s)

2. Suppose x and y are random variables whose probability density functions are defired by

$$p(x) = \begin{cases} 0.1 & 0 \le x \le 10 \\ 0 & elsewhere \end{cases}, \quad \text{and} \quad$$

$$p(y) = \begin{cases} y & 0 \le y \le 1\\ 1 - y & 1 < y \le 2\\ 0 & elsewhere \end{cases}$$

- 2.1 sketch p(x) and p(y) (2 point)
- 2.2 compute the mean of x, and y (6 points)
- 2.3 compute the variance of x and y (6 points)
- 2.4 determine if p(x) is greater or less than p(y), if x = 0.75 and y = 0.5? (3 points)

3. Suppose we have 3 classes of patterns whose features are in 2-D feature space. Each has the following underlying distributions:

$$p(\mathbf{x} \mid \omega_1) \cong N(\mathbf{0}, \mathbf{I})$$

$$p(\mathbf{x} \mid \omega_2) \cong N\left[\begin{bmatrix} 1\\1.5 \end{bmatrix}, \mathbf{I} \right]$$

$$p(\mathbf{x} \mid \omega_3) \cong 0.5N\left[\begin{bmatrix} -0.5\\0.5 \end{bmatrix}, \mathbf{I} \right]$$

with
$$P(\omega_1) = 0.2$$
, $P(\omega_2) = 0.5$, and $P(\omega_3) = 0.3$

By explicit calculation of posterior probabilities, classify the point $x = \begin{bmatrix} 0 \\ 0.2 \end{bmatrix}$ for minimum probability of error. (15 points)

4. Class 1 and Class 2 has the feature vectors as shown in the following table:

Cla	ss 1	Cla	ss 2
x 1		xl	х2
-3	0	4	0
-1	1	2	0
-1	0	3	2
-2	0	4	-2

The features of each class are assumed to have a Gaussian distribution function (normally distributed).

- 6.1 Use the maximum likelihood parameter estimation method to determine $p(\mathbf{x}|\mathbf{\theta}_1)$ and $p(\mathbf{x}|\mathbf{\theta}_2)$ (10 points)
- 6.2 If $P(\omega_1) = 0.5$ and $P(\omega_2) = 0.5$, use the minimum error criterion to determine he decision function. (10 points)

5. Given a 3-state hidden Markov models defined by a transitional probability matrix and a symbol emission probability matrix as shown below:

$$A = \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0 & 0.5 & 0.5 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0 & 0.5 & 0.5 \\ 0 & 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 0.1 & 0.2 & 0.2 & 0.2 & 0.3 \\ 0.1 & 0.2 & 0.1 & 0.4 & 0.2 \\ 0.4 & 0.2 & 0.1 & 0.2 & 0.1 \end{bmatrix}$$

Let the set of possible emitting symbols V_k be $\{a, b, c, d, e\}$

Ignore the entry and exit states and assume that state 1 is the first state and stat : 3 is the last state. Answer the following questions:

a) Sketch the structure of the HMM and label each link with the appropriate probability. (5 points)

b) Using the Forward algorithm to determine $P(V^T)$ where $V^T = \{c, b, a\}$ (15 pc ints)

c) From part (b), determine the most lik	ely state sequence. (5 points)
ī	End of Exam