Prince of Songkla University Faculty of Engineering

Midterm Examination: Semester 2 Academic Year: 2007

Date: 25 December 2007 Time: 09.00-12.00

Subject: 226-318 INDUSTRIAL CERAMICS Room: R300

ทุจริตในการสอบ โทษขั้นต่ำปรับตกในรายวิชานั้นและพักการเรียน 1 ภาคการศึกษา

Instruction:

- 1. Do all 21.
- 2. The score appears at the end of question.
- 3. Total score is 100.
- 4. Your choices for problem no. 1-18 are shown on page 5-10 You have to put 4 etters which is corresponding to the choice.
- 5. The answers must be done on page 3 and 4
- 6. Book, notes and calculator are allowed.
- 7. Don't ask.

Asst. Prof.Sane Thanthadalug

Oh' L

- 1. There are 4 plates. A is made of iron. C,D and E are made of copper alloy, Al-alloy and granite. Which is the lowest toughness. (4)
- 2. How do you find toughness of problem number one. (4)
- 3. What should you say about SiC and steel in term of hardness, toughness and thermal conductivity. (4)
- 4. From what is the plaster made ? (4)
- 5. How is plaster of paris useful for ceramic industry? (4)
- 6. On what factors do the fired clay colors with the same firing temperature depend? (4)
- 7. What does it occur over the stoneware glazes at 1250 °C or higher? (4)
- 8. How are the low fired bricks shaped in mass production ? (4)
- 9. Why is ball clay more plastic than white clay? (4)
- 10. What are the fluxes for low fired glazes ? (4)
- 11. How do you decrease the moisture of stoneware body before bisque firing ? (4)
- 12. How many stages of water elemination are there during clay body firing? What are they? (4)
- 13. There are 3 ceramic materials. They are silicon carbide, gypsum and feldspar. Tell me the hardest and the harder ones . (4)
- 14. What is the difference between HIP and hot pressing? (4)
- 15. How is a firebrick shaped ? (4)
- 16. What is slip? For what is it used? (4)
- 17. How do you find true density of a firebrick? (4)
- 18. Why have the high clay mixture to be deaired before shaping ? (4)
- 19. Given true density of a firebrick = 3.50 g/cc., apparent porosity = 30 % and bulk density = 2.10 g/cc. Find the sealed porosity. (12)
- 20. Given wt. of a dried brick = 2,100 g., b = 2,800 g. and wt. of brick after 5 hours immersion in boiling water = 2,820 g. Find the absorption by weight after 24 hours cold immersion.
- 21. Given wt. of a brick = 3 kgs, cold crushing strength = 150 kgs/cm^2 , the thickness = 10 cm and The area = 200 cm^2 . The height of wall is 15 m. Find the percentage of work load? (8)

White

Nan	ne	IDno
1.		
2.		
3.		
4.		
4.		
5.		
6.		
		
7.		
0		
8.		
9.		
	L	
10.		
11.		
	<u></u>	
12.		
12		
13.		
14.		
	L	
15.		1

din

4

16.

17.

18.

19.

20.

21.

Milv

Α	В	С	D	Impact test.
В	A	С	D	Permeability test.
С	A	В	D	Crushing strength test.
D	A	В	С	Hardness test.
С	D	Е	F	Model making.
D	С	Е	F	Model and mold making.
C	D	F	Е	Model and mold for pressing, jiggering and slip casting.
D	Е	С	F	Mold for pressing and slip casting.
A	F	G	X	Firing atmosphere, chemical composition and time.
F	A	G	X	Firing temperature and time.
A		;] >	F	Chemical composition and firing time.
C	G F	Α	X	Firing atmosphere and temperature.

Dry pressing.

drih.

	G D H Y Extruder.
	H D G Y Casting.
	Y H D G Throwing.
	C. F G K HIP is hot pressing with isostatic pressure but hot pressing is
٠	not isostatic pressure. F C G K HIP is the shaping for high value product but hot pressing is
	not. G F C K HIP is good for shaping fire brick but hot pressing is not.
	F K G C HIP is special shaping but hot pressing is not.
	A D G X Incomplete reaction.
	D A X G Complete reaction.
	X D A G Reversible reaction.
	G X D A Irreversible reaction.
	F G H K Ball clay is more sticky.
	G F K H White clay is softer.

	K G F H There are more organic material and others in ball clay.
·	F K H G Ball clay is mixed with binder but white clay is not.
	G H J K Boron and lead compounds.
÷.	H J K G Lead compound and feldspar.
	H G K J Quartz and feldspar.
·.	G H K J Boron compound and feldspar.
	A B Q R The body is put into dryer.
	B A R Q Leave the body in the open shelter for hrs or days.
:	Q B A R Leave the body under the sun.
	A Q B R To fire the body at 200 °C for hrs.
•	C Q X R Iron plate.
	Q C R X Copper alloy plate.

C R Q X Al-alloy plate.
R C X Q Granite plate.
D Q Z X Hardness of SiC is heigher but toughness and thermal
conductivity are lower.
Q D Z X Hardness of steel is heigher but toughness and thermal
conductivity are lower.
Z Q X D Toughness of SiC is lower but hardness and thermal
conductivity are heigher.
X Q Z D Thermal conductivity of SiC is lower but the others are
heigher.
J K L M Felspar.
K J L M Clay.
L K J M The mineral gypsum.
J K M L Quartz.
•••
S T U V 3 stages. Mechanical, hygroscopic and chemical water elemination.
T S V U 2 stages. Mechanical and chemical water elemination.

,

X min

V T S U 1 stage. Hygroscopic water elemination.
USTV 2 stages. Mcchanical and hygroscopic water elemination.
C R Q S Gypsum is the hardest and the harder is silicon carbide.
R C Q S The hardest is silicon carbide and gypsum is the harder.
Q R C S The hardest is feldspar and gypsum is the harder.
S Q R C The hardest is silicon carbide and feldspar is the harder.
D F J K Liquid of suspensive ceramics. Casting.
FDKJ Solution of ceramic material. Casting.
D K J F Solution of ceramic material. Glazing.
K D F J Liquid of ceramics. Glazing.
A D K L To weigh the firebrick and calculate the volume.
D A K L To weigh the firebrick and find the true volume.

√n'h'

K A D L To make the powder from the brick and calculate the volume
of brick.
A L K D To find the weight and the volume of the brick powder.
X Y R S To get the good quality of ceramic product.
Y X S R To get the good quality of glaze.
S Y R X To reduce the defects from buble.
R S X Y To reduce the cracks from buble.

Mih "