PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination: Semester 2

Academic Year: 2007

Date: December 26, 2007

Time: 13:30-16:30

Subject: 226-331: Industrial Automatic Control

Room: R300

ทุจริตในการสอบ โทษขั้นต่ำกือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภากการศึกษา

Instructions

- There are 7 questions in 11 pages.
- Attempt all questions and write the answer in this exam paper.
- A sheet of A4 notes (With your own hand-writing), a dictionary (**not** a talking dictionary) and a calculator without programming capability are allowed.
- Total score is 110.

Name:	Student ID
-------	------------

Question #	Full Score	Assigned Score
1	20	
2	20	
3	10	
4	20	
5	10	
6	20	
7	10	
Total	110	

Assoc. Prof. Somchai Chuchom

Win.

	Name		
Qι	Question #1 (20 marks) Briefly explain the following questions.		
1.1	Why is an automatic control system important in a manufacturing industry?		
••••			
••••			
	The differences between the Command variable, v, and the Reference variable, r, are :		
1.3	Give two examples of feedback control systems in which a human acts as a controller.		
1)		
2)		
1.4	For the air-conditioning control system, list 2 parameters (also specify its type) and 2 variables		

(also specify its type) inv	olved in the system.		
Parameter	rs	Variables	
nama	t ma	nama	hma

Parameters		; S
type	name	type
	1	
	2	

1.5 In the past, control system used a human operator as part of a closed-loop control system. Sketch the block diagram of the valve control system shown in Figure 1.

Figure 1

Nº MI

Question #2 (20 marks)

2a) Determine the output transform, Y(s), for the differential equations.

$$\frac{d^3y}{dt^3} + 3\frac{d^2y}{dt^2} - \frac{dy}{dt} + 6y = \frac{d^2x}{dt^2} - x$$

 $\frac{d^3y}{dt^3} + 3\frac{d^2y}{dt^2} - \frac{dy}{dt} + 6y = \frac{d^2x}{dt^2} - x$ where y is output, and initial conditions are: $y(0^+) = \frac{dy}{dt}\Big|_{t=0^+} = 0$,

$$\frac{d^2y}{dt^2}\Big|_{t=0^+}=1, x \text{ is input and } x(t)=5 \sin t.$$

Name	ID

2b) Determine y(t) for the system described by the differential equation $\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = \frac{dx}{dt} + 3x$ with initial conditions $y(0^+) = 1$, $\frac{dy}{dt}\Big|_{t=0^+} = 0$ and the input is given by $x(t) = e^{-4t}$

Name	ID
INDITIO	

Question #3 (10 marks)

A two-mass model of the robot is shown in Figure 3. Find the transfer function, G(s) = Y(s)/F(s).

Figure 3

(X) h

Name	ID
Name	[]

Question #4 (20 marks)

A system is shown in Figure 4 (a).

- 4.1) Determine G(s) and H(s) of the block diagram shown in Figure 4(b) that are equivalent to those of the block diagram of Figure 4(a).
- 4.2) Determine Y(s)/R(s).

Figure 4

Nr'h-

Name......ID......

Question #5 (10 marks).

Simplify the block diagram of the system shown in Figure 5.

Figure 5

X 10° h/

Name......ID.....

Question #6 (20 marks).

A system is shown in Figure 6

Figure 6

6.1) Find the closed-loop transfer function Y(s)/R(s) when

$$G(s) = \frac{10}{s^2 + 2s + 10}$$

- 6.2) Determine Y(s) when the input R(s) is a unit step.
- 6.3) Compute y(t).

226-331 Industrial Automatic Control

Page 9/11

Page 11/11

226-331 Industrial Automatic Control

Name	IU

Question #7 (10 marks).

Given the control system as shown in Figure 7, determine an appropriate gain, K, so that the steady-state error to a unit step input is minimized.

226-331 Industrial Automatic Control

M' h'