มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

สอบกลางภาค ประจำภาคการศึกษา 2

ปีการศึกษา 2550

วันที่ 6 มกราคม 2551

เวลา 09.00 — 12.00.

ห้องสอบ R 300

วิชา 215-612: Finite Element Method, 220-504: Introduction to Finite Element Method

ชื่อ-สกุล	
รหัส	

คำชี้แจง

- 1.ข้อสอบทั้งหมดมี 4 ข้อ คะแนนรวม 100 คะแนน ดังแสดงในตารางข้างล่าง
- 2.ซ้อสอบมีทั้งหมด 4 หน้า (รวมปก) ผู้สอบต้องตรวจสอบว่ามีครบทุกหน้าหรือไม่ (ก่อน ลงมือทำ)
- 3.ให้ทำหมดทุกซ้อลงในสมุดคำตอบ
- 4.อนุญาตให้ใช้เครื่องคิดเลขได้ทุกชนิด
- 5.ห้ามหยิบ หรือยืมสิ่งของใดๆ ของผู้อื่นในห้องสอบ
- 6. Open Books
- 7. GOOD LUCK

ตารางคะแนน

ข้อที่	คะแนนเต็ม	ได้
1	25	
2	25	
3	25	
4	25	
รวม	100	

Problem 1 (25 Points)

Consider a boundary value problem:

$$\frac{d^2\phi}{dx^2} - \phi = 0 \qquad , \qquad 0 < x < 1$$

$$\phi(0) = 0$$

$$\frac{d\phi(1)}{dx} = 10$$

Let $\phi \cap \widehat{\phi} = \sum_{m=1}^{M} a_m N_m$ where a set N_m is selected such that the condition at x = 0 is automatically satisfied.

- (a) Write the weighted residual statement of this problem. (5 points)
- (b) If $N_m = x^m (m = 1, 2, ..., M)$, use the appropriate weighting function W_l (l=1,2,...,M) to obtain $\hat{\phi}(x)$ when

- $W_i = \delta(x - x_i)$; point collocation

 $-W_{i}=N_{i}$

; weak form of Galerkin's equation

Use M = 2. (20 points)

(c) Solve this differential equation analytically. (5 points)

Problem 2 (25 Points)

Consider a thin beam element with the governing equation and boundary equation is being as shown below

$$EI\frac{d^{4}w}{dx^{4}} = 0, 0 < x < L$$

$$V_{1}, w_{1}$$

$$V_{2}, w_{2}$$

$$EI\frac{d^{3}w}{dx^{3}} = V_{1}, x = 0$$

$$-EI\frac{d^{2}w}{dx^{2}} = M_{1}, x = 0$$

$$-EI\frac{d^{3}w}{dx^{3}} = V_{2}, x = L$$

$$EI\frac{d^{2}w}{dx^{2}} = M_{2}, x = L$$

(a) Derive the total potential energy of this beam. Then, from the variational principle, formulate the stiffness matrix K and the force vector F corresponding to $\{w_1 \ \theta_1 \ w_2 \ \theta_2\}$ where $\theta = \frac{dw}{dx}$. (Let the deflection of this beam be given by a cub c approximation as $w(x) = a_1 + a_2 x + a_3 x^2 + a_4 x^3$)

- (b) Show that we can obtain the matrices K and F by using the weak form of Galerkin's equation which are identical to the ones in (a).
- (c) Show that the operator $\frac{d^4(.)}{dx^4}$ is self-adjointed.

Problem 3 (25 Points)

The plane truss shown below is composed of members having a square 15 mm x $^{\circ}$ 5 mm cross section and modulus of elasticity E = 69 GPa.

- (a) Assemble the global stiffness matrix.
- (b) Compute the nodal displacements in the global coordinate system for the loals shown.
- (c) Compute the axial stress in each element, support reactions and also check the equilibrium of the system.

Problem 4 (25 Points)

A cylindrical rod that is one of several in a small heat exchange device is shown in the following figure. The left end of the pin is subjected to a constant temperature of 130 F^0 and the right end id in contact with a chilled water bath maintained at constant temperature of 40 F^0 . The exterior surface of pin is in contact with moving air at '2 F^0 .

The physical data are given as:

$$k = 120 \frac{Btu}{hr - ft - F^{0}} : Thermal Conductivity$$

$$D = 0.5 in. : Diameter of Pin$$

$$L = 4 in. : Length of Pin$$

$$\beta_{air} = 50 \frac{Btu}{hr - ft^{2} - F^{0}} : Heat Transfer Coefficient of Air$$

$$\beta_{water} = 100 \frac{Btu}{hr - ft^{2} - F^{0}} : Heat Transfer Coefficient of Water$$

$$72^{\circ} F$$

$$180^{\circ} F$$

$$40^{\circ} F$$

Use four equal-length linear elements to obtain a finite element solution for the temperature distribution across the length of the pin.