Prince of Songkla University **Faculty of Engineering**

Midterm Examination

Semester 2/2550

25 December 2007

Time 13:30-16:30

216-231 Engineering Thermodynamics I

Room: Robot

Directions

- Books and note are not allowed.
- All types of calculator and dictionary are permitted.
- Attempt all 5 questions.

Juntakan Taweekun **Instructor**

Problem	Marks	
1	15	
2	20	
3	15	
4	20	_
5	15	
Total	85	

Name _			
ID			

Name-Surname	ID	 	

Question 1 (15 points)

A spherical balloon with a diameter of 6 m is filled with helium at 20 °C and 200 kPa. Determine the mass of the helium in the balloon.

Name-Surname I	ID
----------------	----

Question 2 (20 points)

Consider a person standing in a room at 20 °C. For a heat transfer purposes, a standing man can be modeled as a 30-cm diameter, 170-cm long vertical cylinder with both the top and bottom surfaces insulated and with the side surface at an average temperature of 34 °C. The convection heat transfer coefficient is 15 W/m².°C, Stefan Boltzmann constant σ) = 5.67 x10⁻⁸ W/m².K⁴ and emissivity of human skin is 0.95.

- 2.1 Determine the rate of heat loss from this man by convection in the room.
- 2.2 Determine the total rate of heat transfer from this person.

Name-Surname	. II	D
--------------	------	---

Question 3 (15 points)

An aluminum pan which thermal conductivity is 237 W/m.°C has a flat bottom v hose diameter is 20 cm and thickness 0.4 cm. Heat is transferred steadily to boiling water n the pan through its bottom at a rate of 500 W. If the inner surface of the bottom of the 1 an is 105 °C, determine the temperature of the outer surface of the bottom of the pan.

Name-Si	ırname	 ID	

Question 4 (20 points)

A passive solar house that is losing heat to the outdoors at an average rate of 50,000 kJ/hr is maintained at 22°C at all times during a winter night for 10 hrs. The house is to be heated by 50 glass containers, each containing 20 Litres of water that is heated to 80 °C during the day by absorbing solar energy. A thermostat controlled 15-kW back-up electric resistance heater turns on whenever necessary to keep the house at 22 °C.

where
$$C_{p,water} = 4.18 \text{ kJ/kg.}^{\circ}\text{C}$$

 $\rho_{water} = 1,000 \text{ kg/m}^{3}$

- 4.1 How long did the electric heater run that night if the house was integrated with solar heating?
- 4.2 How long would the electric heater run that night if the house incorporated nc solar heating?

Name-Surname	ID
--------------	----

Question 5 (15 points)

A heat engine is operating on a Carnot cycle and has a thermal efficiency of 55 percent. The waste heat from this engine is rejected to a nearby lake at 16 °C at a rate of 844 k /min. Determine

- 5.1 The power output of the engine (W_{out}) in unit of kW.
- 5.2 The temperature of the source.

Ideal-gas specific heats of various common gases

Gas	Formula	Gas constant, <i>R</i> kJ/kg · K	C_{\wp} kJ/kg $+$ K	<i>C</i> , kJ/kg · K	k
Air	_	0.2870	1.005	0.718	1.400
Argon	Ar	0.2081	0.5203	0.3122	1.667
Butane	C_4H_{10}	0.1433	1.7164	1.5734	1.091
Carbon dioxide	CO ₂	0.1889	0.846	0.657	1.289
Carbon monoxide	CO	0.2968	1.040	0.744	1.400
Ethane	C₂H ₆	0.2765	1.7662	1.4897	1.186
Ethylene	C₂H₄	0.2964	1.5482	1.2518	1.237
Helium	He	2.0769,	5.1926	3.1156	1.667
Hydrogen	H ₂	4.1240	14.307	10.183	1.405
Methane	CH₄	0.5182	2.2537	1.7354	1.299
Neon	Ne	0.4119	1.0299	0.6179	1.667
Nitrogen	N_2	0.2968	1.039	0.743	1.400
Octane	C ₈ H ₁₈	0.0729	1.7113	1.6385	1.044
Oxygen	02	0.2598	0.918	0.658	1.395
Propane	C₃H ₈	0.1885	1.6794	1.4909	1.126
Steam	H ₂ O	0.4615	1.8723	1.4108	1.327

Note: The unit kJ/kg \cdot K is equivalent to kJ/kg \cdot °C.

Source: Gordon J. Van Wylen and Richard E. Sonntag. Fundamentals of Classical Thermodynamics, English/SI Version, 3rd ed. (Nev York: John Wiley & Sons. 1986), p. 687, Table A.8SI.