Prince of Songkla University Faculty of Engineering

Final Examination: Semester II

Academic Year: 2007

Date: February 27, 2008

Time: 09.00-12.00 hr.

Subject: 220-570 Transportation Planning and Land Use

Room: A401

คำสั่งในการทำข้อสอบ

1. ข้อสอบชุคนี้มีคำถาม 4 ข้อ ทุกข้อมีคะแนนเท่ากัน ให้ทำทุกข้อ

2. ตอบคำถามในกระคาษที่กำหนดให้

3. อนุญาตให้นำเอกสาร ตำรา และอุปกรณ์การคำนวณเข้าห้องสอบได้

1. An urban area consisting of four zones has the base-year trip matrix shown. The growth rates for the origin and destination trips have been projected for a 25-year period. Using Fratar's techniques, calculated the numbers of trip interchanges in the horizon year. Do just two iterations.

Origin	Destination				
	1	2	3	Total	Origin growth factors
1	3	5	8	16	2
2	4	1	9	14	4
3	2	4	2	8	1
Total	9	10	19	38	1
Destination growth factors	0.5	3	4	T	

2. A three-zone city has the following productions and attractions:

Zone	Production	Attraction
1	1000	3000
2	2000	1500
3	3000	1500

The travel time matrix is

Zone	Tra	avel Time (m	in.)
Ī	1	2	3
1	2	8	7
2	8	3	5
3	7	5	2

Travel Time (min)	F _{ii}		
2	3.0		
3	2.5		
5	2.3		
7	1.5		
8	1.2		
11	0.95		
12	0.90		

Apply the gravity model to distribute the trip $(K_{ii} = 1)$

- 3. A network connected to four centroids is loaded with trips, as shown in the trip table. Assign the trips (using the all-or-nothing technique) and calculate the total cost, assuming the following:
 - (1) figures on links indicate travel cost;
 - (2) a left turn, a right turn, and going straight through an intersection carries a penalty of 1, 3 and 2 units, respectively; and
 - (3) all links are two ways.

	То			
From	Α	В	С	D
Α	-	700	400	900
В	200	-	900	300
С	600	800	-	400
D	100	200	500	-

4. A city has a utility function for use in a logit model of the form

$$U = -0.075A - 0.6W - 0.04R - 0.02C$$

Where A is the access time in minutes, W is the waiting time in minutes, R is the riding time in minutes, C is the out-of-pocket cost in cents.

(a) What modal distribution would you expect, using the following values for A, W, R and C fo the four modes used in the city.

MODE	Α	W	R	C
Auto	6	1	25	300
Rail	7	10	15	75
Bus	10	15	35	60
Bike	1	0	45	10

(b) The city is serious thinking of subsidizing rail and bus by 40%, encouraging biking by constructing bike paths and thus reducing biking time by 25%, and increasing auto costs (through higher parking charges) by 10%. What is likely to be the new modal distribution with those changes?