ชื่อ	รหั สประจำตัว	·	
PRINCE OF SONGKLA	UNIVERSITY		
FACULTY OF ENG	GINEERING		
Final Examination: Semester II (#3)	Academic Year	:	20)7

Date: 23 February 2008

Subject: 230-630 Advanced Transport Phenomena I

Time

Poon

Reademic Year

Poon

Reademic Year

Reade

- ข้อสอบมี 5 ข้อ จำนวน 9 หน้า ต้องทำทุกข้อ คะแนนเต็ม 70 คะแนน
- ควรใช้เวลาทำข้อสอบโคยเฉลี่ย 2.5 นาที/คะแนน

ข้อที่	คะแนนเต็ม	ได้คะแนน
1	15	
2	20	
3	10	
4	20	
5	5	
รวม	70	

- ขอให้นักศึกษาทำข้อสอบในที่ว่างซึ่งได้เตรียมไว้สำหรับข้อสอบแต่ละข้อ โดยอาจใช้เนื้อที่ด้านห iv
- อนุญาตให้นำหนังสือ เอกสาร เครื่องคำนวณ และอุปกรณ์อื่นๆ เข้าห้องสอบได้

ทุจริตในการสอบ โทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน $m{1}$ ภาคการศึกษ

สุธรรม สุขมณี
ผู้ออกข้อสบบ
15 กุมภาพันธ์ 2551

ชื่อ		- 2 -	รหัสประจำตัว	٠.
1)	Predict D_{AB} for an equimolar mixture of	of C ₂ H ₄ and C ₂	H_6 at 294 K and 98 atm. Assume this mixton	ure
	having an ideal gas behavior and the v	value of univers	sal gas constant (R) is 82.0578	
	atm-cm ³ /mole-K.		(15 poin	its

(15 points)

ชื่อ	- 3 -	รหัสประจำตัว
– Re	eserved for problem #1 -	

2) A droplet of liquid A, of radius r_1 , is suspended in a stream of gas B. We postulate that there is a spherical stagnant film of radius r_2 surrounding the droplet. The concentration of A in the gas phase is x_{A1} at $r = r_1$ and x_{A2} at $r = r_2$. Find the concentration distribution and the molar flux of A within the spherical stagnant film. (20 points

ชื่อ	- 5 -	รหัสประจำตัว
- Reso	erved for problem #2 -	

3) Gas A moves through an isothermal tubular reactor with an inside diameter D and length of L. Then, A disappears slowly by a second order reaction to gas B. If an entering concentration of A is c_{A0} , the time and area smoothed velocity of gas inside the reactor is $\langle \overline{v}_z \rangle$ and the transport properties of the gases ρ , μ , k, C_P and D_{AB} can be assumed constant. Perform a dimensional analysis for an equation of continuity of A to find the dimensionless groups to describe this reacting system. (10 point i)

ชื่อ	- 7 -	รหัสประจำตัว
------	-------	--------------

- 4) Dry air at 310 K and average pressure of 101.3 kPa ($\rho = 1.14 \text{ kg/m}^3$, $\mu = 0.018 \text{ mPa.s}$) passes through a naphthalene tube that has an inside diameter of 50 mm, flowing at a bulk velocity of 20 m/s. Assuming that the change of pressure along the tube is negligible and the temperature of naphthalene surface is at 310 K. At its surface temperature, naphthalene has a vapor pressure of 26 Pa and a diffusivity in air of $5.40 \times 10^{-6} \text{ m}^2/\text{s}$.
 - 4.1 Determine the length of tube that is necessary to produce a naphthalene concentration in the exiting air stream of 3.70×10^{-3} mol/m³. (14 points)
 - 4.2 If the wall shear stress (τ_0) for the flowing air stream is taken as 1.14 N/m². Estimate the edd / (turbulent) mass diffusity at the tube centerline. (6 points)

ชื่อ	- 8 -	รหัสประจำตัว
– Rese	erved for problem #4 -	

ชื่อ	- 9 -	รหัสประจำตัว
ชอ	- 7 -	รหสบระจาตว

5) Consider the liquid-gas system where the apparent local mass transfer coefficients in liquid phase $(k_{x,loc}^0)$, and gas phase $(k_{y,loc}^0)$ and slope of gas-liquid equilibrium (m) are related as follow:

$$\frac{k_{x,loc}^0}{mk_{y,loc}^0} = 20$$

Calculate the value of
$$\frac{k_{x,loc}^0}{K_{x,loc}^0}$$
 and $\frac{k_{y,loc}^0}{K_{y,loc}^0}$ (5 points)