MILLO	Name	Student ID
-------	------	------------

PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Final Examination: Semester II

Academic year: 2007

Date: February 19, 2007

Time: 9.00 - 12.00 am

Subject: 231-322 Chemical Engineering Kinetics

Room: R300

and Reactor Design II

ทุจริตในการสอบ โทษขั้นต่ำปรับตกในรายวิชานั้น และพักการเรียน 1 ภาคการศึกษา โทษสูงสุด ให้ออก

- 1. The exam are not allow to leave an exam room
- 2. All books, notes, and all computing devices (i.e., calculator and computer) are allowed
- 3. Do not discuss or ask any person during taking an exam
- 4. Do all problems, the mark of each problem is listed below

Problem No.	Total Points	Point obtained
1	20	
2	30	
3	15	
4	20	
5	15	
รวม	100	

Please note that the exam must consist of 11 pages (including this pages)

Good luck and do your best on the exam

Assoc. Prof. Dr. Charun Bun /akan

Feb 15, 2007

Student	חו															
Student	IU.	 ٠.	٠.	 	٠.	٠.	٠	 ٠.	 	 	٠.	 	 ٠.		٠.	٠

1. (20 points)

The elementary irreversible organic liquid phase reaction

$$A + B \longrightarrow C$$

is carried out in an existing adiabatic flow reactor. An equal molar feed in A and B enter at $?7^{\circ}$ C. The volumetric flow rate and C_{AO} are 2 dm 3 /s and 0.1 mol/dm 3 . The additional information are given below:

$$H_{A}^{o}(298) = -20 \, kcal \, / \, mol \, , \, H_{B}^{o}(298) = -15$$

$$C_{PA} = C_{PB} = 15 \frac{cal}{mol \, K} \,, \; C_{PC} = 30 \frac{cal}{mol \, K} \label{eq:cal}$$

$$k = 0.01 \frac{dm^3}{mol\ s}, at 300 K, E = 10,000 \frac{cal}{mol}$$

- 1.1 Calculate the volume of CSTR necessary to achieved 85% conversion of A
- 1.2 Calculate the volume of PFR necessary to achieved 85% conversion of A

Student	ID	
Otadonic		

2 (30 points)

The endothermic liquid-phase elementary reaction

$$A + B \longrightarrow 2C$$

proceeds, substantially, to completion in a single steam-jacketed CSTR. From the following data, calculate the steady-state reactor temperature:

Reactor and reaction:

Reactor volume: 125 gal

Steam jacket area: 10 ft²

Steam temperature: 365.9 °F

Overall heat-transfer coefficient of jacket, U: 150 Btu/(hr ft² °F)

Agitator shaft hose power: 25 hp (63,525 Btu/hr)

Heat of reaction, $\Delta H_{Rx}^o = +20,000$ Btu/ lb mol of A (independent of temperature)

Feed condition and feed properties:

Items		Component	
	А	В	2
Feed (lb mol/hr)	10	10.0	3
Feed temperature (°F)	80	80	_
Specific heat Btu/ (lb mol °F)*	51	44	47.5
Molecular weight	128	94	222
Density (lb/ft ³)	63	67.2	65

^{*} Independent of temperature

Student ID.....

3 (15 points)

The first order reaction $A \longrightarrow B$ is carried out in packed bed reactor packed with porous ϵ olid. The reactions were conducted at different particle sizes ($d_p = 1.2$ and 5 cm). Given that the Thiele modulus of catalyst with $d_p = 1$ cm is 5

- 2.1 Estimate the Thiele modulus and the internal effectiveness factor for each particle size.
- 2.2 Explain what you had learned from the values of the Thiele modulus and the internal effectiveness obtained from 2.1

Given: Thiele modulus for first order reaction is define as

$$\phi_1 = R \sqrt{\frac{-r_{As} \rho_c}{D_e C_{As}}}$$

Internal effectiveness factor

$$\eta = \frac{3}{\phi_1^2} \left(\phi_1 \coth \phi_1 - 1 \right)$$

If
$$\phi_1 > 2$$
 then $\eta = \frac{3}{{\phi_1^2}} \left(\phi_1 - 1 \right)$

If
$$\phi_1 > 20$$
 then $\eta = \frac{3}{\phi_1}$

Student	ID	

4 (20 points)

The catalytic hydrogenation of methyl linoleate to methyl oleate was carried out in a laboratory-scale slurry reactor in which hydrogen gas was bubbled up through the liquid containing spherical patalyst pellets. The pellet density is 2 g cm⁻³. The following experiments were carried out at 25°C:

Run	Partial Pressure of H ₂	Solubility of H ₂	H ₂ Rate of	Catalyst	Cataly st
	(atm)	(mol dm ⁻³)	Reaction	Charge	Partic e Size
			(mol dm ⁻³ min ⁻¹)	(g dm ⁻³)	(µm)
1	3	0.007	0.014	3.0	12
2	18	0.042	0.014	0.5	50
3	3	0.007	0.007	1.5	50

- 4.1 What is the major resistance?
- 4.2 What should be taken to reduce such resistance?

Student	ID
---------	----

5 (15 points)

From problem 4, if the volume of the slurry reactor is 3 m 3 , the molar feed rate of methyl linoleate is 0.5 kmol min $^{-1}$, the catalyst particle size is 80 μ m, the partial pressure of H $_2$ is 15 atm and the reactor is considered to be well mixed, calculate the catalyst charge necessary to achieve 90% conversion of methyl linoleate.