PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Final Examination: Semester 2

Academic Year: 2007

Date: February 23, 2008

Time: 9:00-12:00

Subject: 226-331: Industrial Automatic Control

Room: R300

ทุจริตในการสอบ โทษขั้นต่ำกือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

Instructions

- There are 7 questions in 4 pages.
- Attempt all questions and write the answers in the answer-book provided.
- A closed-book exam, only a sheet of A4 notes (With your own handwriting), a dictionary (**not** a talking dictionary) and a calculator without programming capability are allowed.
- Total score is 120.

Name:	Student ID

Question #	Full Score	Assigned Score
1	15	
2	15	
3	20	
4	20	
5	20	
6	15	
7	15	
Total	120	

Assoc. Prof. Somehai Chuchom

Question #1 (15 marks) Given the system in Figure 1,

- 1.1 Specify zeros and poles of the system.
- 1.2 Solve for the output, c(t).
- 1.3 From the result of 1.2, identify the forced response part, and the natural response part.

Figure 1

Question #2 (15 marks) For each of the systems shown in Figure 2,

- 2.1 Find the value of ζ
- 2.2 Report the kind of response expected (undamped, underdamped, ...) by roughly sketch its response for step input (R(s) = 1/s).

Figure 2

Question #3 (20 marks) Sketch the root loci for the system shown in Figure 3,

- 3.1 If the locus moves across the $j\omega$ axis, specify K-value for the root on $j\omega$ axis.
- 3.2 If any break-in or break-away points on the real-axis, specify the points.

Figure 3

2

Name......ID.....

Question #4 (20 marks)

4.1 Determine the range of K for stability of a unity feedback control system whose openloop transfer function is $G = \frac{K}{s(s+1)(s+2)}$

4.2 Apply Linard-Chipart Technique to analyze for the range of K that makes the system in Figure 4 stable.

Question #5 (20 marks) The control systems are shown in Figure 5. System I is a positional servo system. System II is a positional servo system with PD control action. Compare the unit-step and unit ramp response of the two systems. Which system is better with respect to the speed of response in the step response.

Figure 5

NameID

Question #6 (15 marks)

6.1 Specify the basic components in the pneumatic control system, then show how to connect or link them to form a part in the control system.

6.2 Show the advantages of the hydraulic control system over the pneumatic control system, and mention at least 3 most appropriate applications of it (the hydraulic control system) in the industry.

Question #7 (15 marks) Explain how can you apply the MATLAB software in the automatic control problems by summarizing your work assignment in applying MATLAB in the automatic control system.