	คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์	
ารสอบปลายภาค ประจำภาคการศึกษาที่ ๒	ประจำปีการศึกษา ๒ ๕๕๐	
ันพฤหัสที่ ๒๑ กุมภาพันธ์ พ.ศ. ๒๕๕๑	เวิลิา ๑๓.๓๐-๑๖.๓๔ น.	
ชา ๒๑๕-๓๒๔ : กลศาสตร์เครื่องจักรกล	ห้องสอบ หัวหุ่น	

<u>คำสั่ง</u>

- ๑. ข้อสอบมีทั้งหมด ๕ ข้อ ให้ทำลงในข้อสอบทุกข้อ
- ๒. อนุญาตให้ใช้เครื่องคิดเลขได้
- ๓. ให้ใช้เครื่องมือเขียนแบบได้
- ๔. ไม่อนุญาตให้นำเอกสารใดใดเข้าห้องสอบ

รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
9	ලල	
Jes	ලිට	
តា	മ്രഠ	
€	മഠ	
Œ	Jao	
รวม	900	

1) 1.1) What is the type of each cam?

- (b)_____
- (c)_______

Use the following pictures to give all correct answers to questions 1.2) - 1.5)

- 1.2) Which cam has translating follower?
- 1.3) Which one is oscillating follower?
- 1.4) Which cam and follower has sliding contact?
- 1.5) All the cams above are (form-closed / force-closed)

1.6) All the cams above are (form-closed / force-closed)

1.7) Name the type of the following gears.

Name :	Student ID # :
--------	----------------

2) The ring gear 2 of the planetary gear train is rotating at 200 rpm counterclockwise as viewe I from the right, and the planet carrier 3 is rotating at 100 rpm clockwise. Determine the angular velocity of the output shaft 8 as viewed from the right. The number of teeth of each gear is as follows; $N_2 = 30$, $N_4 = 20$, $N_5 = 15$, $N_6 = 18$, $N_7 = 27$, and $N_8 = 108$.

Name:	Student ID # :

3) In the mechanism shown, if load P acting on link 4 is 40 N, determine the force Q to keep the mechanism in static equilibrium at this position, using graphic method. Also draw the free body diagrams of links 2, 3, and 4. The friction between links 1 and 4 is negligible.

Name :	Student ID #:	
		_

4) The mechanism consists of link ABC and 2 light weight frictionless pins at A and B. Point A is moving at constant speed 30 mm/s to the right. The velocity and acceleration analysis diagrams are given as shown. If the centroid of link ABC is at B with mass of 2 kg, and I_G = 3000 kg.mm². Determine the force P acting perpendicular to link ABC at C.

 Student ID #	· 	
	Student ID # :	Student ID # :

5) Weights of 1 kg, 2 kg, and 1.5 kg are located at radii 0.5 m, 0.8 m, and 0.3 m in the planes C, D, and E, respectively, on a shaft supported at the bearings B and F, as shown. If we have two correction masses of 0.5 kg each, find the radius and angular locations to be placed in the end planes A and G so that the dynamic load on the bearings will be zero.

