HATINYIROHIVATIUATUNS

AN suMans

goudanania UszdiniAnisAne 2 Jn1sfnwn 2550

il 18 NHNTAE 2551 ADIFBU R 300 1781 13.30 — 16.30.

%7 215-621; Finite Element Method, CE 220-504: Introduction to Finite Element Method

ABUR9
1.EDHOUINNAS 6 58 AZWWHIIN 80 AZL AILAAIIHANTIEI9ES
2.A9FDURNINNA 5 U (578UN) ;j’aa‘uﬁaamswaauiﬁﬁmunnwﬁm%aw (N8 4
(-1 o
asilani)
3.1?%’7'111434mnnz’:’aaﬂuaaﬂmﬁmau
4.ougalvldiaSasAnaalannyde
s.¥aniiu wiatinfzasla g zasfdulwiosdau

6. Open Books

ANS1IAS LI
Fod AZUWHLAN o
1 10
2 20
3 20
4 5
5 10
6 15
59 20




Problem 1 (10 Points)

To determine the element stiffness matrix of a tapered beam,

h=35.0

1.00 ‘
whose width is constant b = 1, but depth 4 varies linearly over the element as show:1
in the figure.

We have to integrate
=)
K = [ B4(x)EI(x)dx
0

where B(x)=6-12x.

Use Gauss quadrature to integrate this problem by using the minimum n-poi it

that can get the exact result.

Problem 2 (20 Points)

In the finite element formulation of near incompressible isotropic materials (as well as
plasticity and viscoelasticity) it is convenient to use the so-called Lame constants A
and u instead of £ and v in the constitutive equations. Both 1 and x have the physical

dimension of stress and are related to £ and v by
vE ‘ E

A== — : —, = G = _——.
(14 u)(1—2v) 2(1+w)
Conversely . (135 + 200) . 5
Adp 204+ 1)
Substitute the second equation into the following equation
Oy | F 1 v 0 €xx
plane stress: Oy | = sl v 1 0 ey |,
Lo d 17V Lo o Lz ]|z,
- 1 v 0
Oxx | E(1—1) y o PTV Exx
plane strain: | oy, | = Y T—% 1 0 ey |-
LU.\'J‘ .J ( + U)( - Al)) 0 O 1 — 2‘-’ AexJ

2(1 - v)



to express the two stress-strain matrices in terms of 4 and u. Then split the stress-
strain matrix E of plane strain as

E=E,+E,
in which E, and E, contain only x and 4, respectively, with E, diagonal and E,;;= 0.

This is the Lame or {/, u} splitting of the plane strain constitutive equations, whick
leads to the so-called B-bar formulation of near-incompressible finite elements

Express E, and E, also in terms of £ and v.
For the plane stress case perform a similar splitting in which where E, contains only
A=23ul(A+2u)with E,; = 0, and E, is a diagonal matrix function of 4 andZ .

Express E,and E, also in terms of E and v.

Problem 3 (20 Points)
A cantiveler beam-column is joined to a plane stress plate mesh as depicted in tte
figure. Both pieces move in the plane {x, y}. Plane stress elements have two degrecs

of freedom per node: two translations u, and u, along x and y, respectively, where: s
a beam-column element has three: two translations u, and u, along x and y, and o1e

rotation (positive CCW) 6. about z. To connect the cantilever beam to the mesh, tle

following “gluing” conditions are applied:

(1) The horizontal (i) and vertical (u,) dis- : TT
placements of the beam at their common plane beam le’J
node (2 of beam, 4 of plate) are the same. 1) LY H—:—

(2) The beam end rotation &> and the mean ro- nodes 2 and 4 /‘f"j Hi?
tation of the plate edge 3-5 are the same. oecupy satue position x v ¢
For infinitesimal displacements and rota- 9 Y i plane sngss mes 1 1
tions the latter is y5° = (liys — lty3)) H. ‘f&_ X

Questions: N

(a) Write down the three MFC conditions: two from (1) and one from (2), ¢énd

state whether they are linear and homogeneous.

(b) Where does the above expression of 638 come from? (Geome ric
interpretation is ok.) Can it be made more accuracy by including u_,? (To

answer this question, observe that the displacements along 3-4 and 4-5 vary
linearly. Thus the angle of rotation about z is constant for each of them ind

(for infinitesimal displacements) may be set equal to the tangent.)



(c) Write down the master-slave transformation matrix if {uxz,uﬂﬁz} are picked

as slaves. It is sufficient to write down the transformation for the DOFs of
nodes 2,3,4 and 5, which give a T of order 9x6, since the transformations for
the other freedoms are trivial.

(d) If the penalty method is used, write down the stiffness equations of the three
penalty elements assuming the same weight w is used. Their stiffness matrices
are of order 2 x 2,2 x 2 and 3 x 3, respectively. (Do not proceed further)

(e) If Lagrange multiplier adjunction is used, how many Lagrange multipliers will

you need to append? (Do not proceed further)

Problems 4 (5 Points)

The free-free stiffness equations of a superelement are

88 -44 —44 0 Tu] [5
—44 132 44 —44|lu,| |10
—44 44 176 44w | |15
0 -44 —44 220 u,| {20

=

Eliminate u, andu, from the above equation by static condensation (using the explicit

inverse formulas), and show (but do not solve) the condense equation system.

Problem 5 (10 Points)

Find the transformation equation, the Jacobian matrix for the eight-node element

shown in the following figure.
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Hint:

The transformation equations are (contiued)



8
x=y zivi(&n)

i=1

]
y=) ywi(£.n)
i=1

The corresponding shape functions of the eight-node rectangular element.

=-1Q-HA-MA+E+7)
py=L1-EH-n)
Wa=—3A+OHA-MA-E+m)

Ty =51-5H- ), ws= Ta+sna- )
L-HA+mA+E-n)

-
1]
|
s

ve=-1A+HAMA-&-7)

Problem 6 (15 Points)

Construct the shape functions of the 6-node triangular element (x,y co-ordinate).

Show intermediate steps of calculation.




