Prince of Songkla University Faculty of Engineering

Final Examination

Semester 2/2550

22 February 2008

Time 13:30-16:30

216-231 Engineering Thermodynamic I

Room: R300

Directions

- Books, note and dictionary are not allowed.
- All types of calculator are permitted.
- Attempt all 5 questions.

Juntakan Taweekun Instructor

Problem	Marks	
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

Name	_		
ID			

Name-Surname	 •	 ID	

Question 1 (20 points)

A car engine with a power output of 55 kW has a thermal efficiency of 22 percent. Determine the fuel consumption rate of this car (in unit of kg/hr) if the fuel has a hea ing value of 48,000 kJ/kg (that is, 48,000 kJ of energy is released for each kg of fuel burnec).

Question 2 (20 points)

A heat pump is used to meet the heating requirements of a house and maintain it at 22 °C. On a day when the outdoor air temperature drops to -3 °C, the house is estimated to lose heat at a rate of 85,000 kJ/hr. If the heat pump under these conditions has a COP of 2.5, determine

- 2.1) the power consumed by the heat pump (in unit of kW)
- 2.2) the rate at which heat is absorbed from the cold outside air (in unit of kW)

^{5.1} The maximum rate of heat removal from the refrigerated space (in unit of kJ/min)

^{5.2} The total rate of heat rejection to the ambient air (in unit of kJ/min)

Name-Surname	ID
--------------	-----------

Question 5 (20 points)

A Carnot heat engine receives heat from a reservoir at 927 °C at a rate of 740 kJ/min and rejects the waste heat to the ambient air at 30 °C. The entire work output of the heat engine is used to drive a refrigerator that removes heat from the refrigerated space at -5 °C and transfers it to the same ambient air at 30 °C. Determine

- 5.1 The maximum rate of heat removal from the refrigerated space (in unit of kJ/min
- 5.2 The total rate of heat rejection to the ambient air (in unit of kJ/min)