มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

สอบกลางภาค ประจำภาคการศึกษา 1	ปีการศึกษา 2551
วันที่ 28/7/ 2551	ເວດາ
วิชา 220-501 Matrix Structural Analysis	13.30-16.30 4
ห้องสอบ A 303	
ชื่อ-สกล	รหัส

คำชื้แถง

- 1.ข้อสอบทั้งหมดมี 6 ข้อ คะแนนรวม 180 คะแนน คั้งแสดงในตารางข้างถ่าง
- 2.ข้อสอบมีทั้งหมด 4 หน้า ผู้สอบต้องตรวจสอบว่ามีครบทุกหน้าหรือไม่ (ก่อนลงมือทำ) และห้ามและหรือฉีกข้อสอบออกจากเล่ม
- 3.ให้ทำหมดทุกข้อลงในสมุดคำตอบ
- 4. ทุจริตจะได้ E
- 5.อนุญาตให้ใช้เครื่องคิดเลขได้ทุกชนิด
- 6.กระดาษทดที่แจกให้ไม่ต้องส่งคืน ถ้าไม่พอขอเพิ่มที่อาจารย์คุมสอบ
- 7.ห้ามหยิบ หรือยืมสิ่งของใดๆ ของผู้อื่นในห้องสอบ
- 8. อนุญาตให้นำ Dictionary เข้าห้องสอบได้
- 9. One page of note allowed

10. GOOD LUCK

ตารางคะแนน

ข้อที่	กะแนนเต็ม	ได้
1	30	
2	30	
3	30	
4	30	
5	30	
6	30	
รวม	180	

Lecturer: Asst. Prof. Dr. Suchart Limkatanyu

Problem 1. (30 points) Consider the beam shown. Using the strong form of the problem (beam differential equation + boundary conditions), find the transverse displacement and moment fields.

Problem 2. (30 points) The elements and nodes are numbered in the structural model in the figure below. You are asked to

- (a) Identify its degree of statical indeterminacy
- (b) Systematically number the global degrees of freedom and element forces Q using the simply supported beam model as basic system
- (c) Write down the equations of horizontal and vertical forces as well as the moment equilibrium at node 3.

Problem 3. (30 points) Consider the structure shown below.

- (a) Identify its degree of statical indeterminacy
- (b) Systematically number the global degrees of freedom and element forces
- Q using the simply supported beam model as basic system
- (c) Write down the matrix equilibrium equations associated with free degrees of freedom.

Problem 4: (30 points) Consider the truss shown below. Write down the matrix compatibility equations associated with free degrees of freedom.

Problem 5: (30 points) With the assumption that all frame elements are inextensible, the mechanism in the figure below has two independent free displacement degree of freedom \tilde{U}_1 and \tilde{U}_2 . Determine the global displacements at all nodes corresponding to unit values of \tilde{U}_1 and \tilde{U}_2 .

Problem 6: (30 points) Consider the beam shown. Using the strong form of the problem (beam differential equation + boundary conditions), find the end shears V_1 and V_2 and the end moment M_1 .

