มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

การสอบกลางภาค: ประจำภาคการศึกษาที่ 1

ปีการศึกษา: 2551

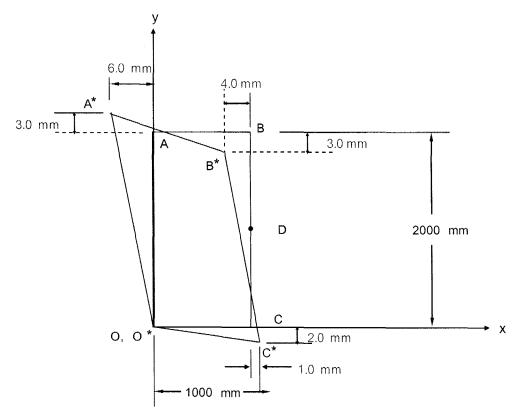
วันที่: 31 กรกฎาคม 2551

เวลา : 09.00-12.00 น.

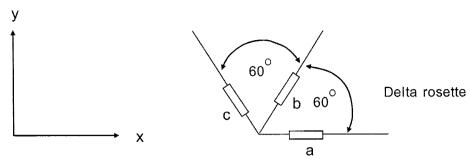
9

ห้อง: A400

วิชา: 220-502 Advanced Mechanics of Solids

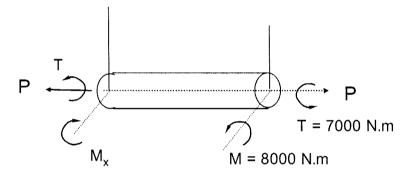

คำอธิบาย

- 1. ข้อสอบมีจำนวนทั้งหมด 5 ข้อ
- 2. ให้เลือกทำข้อสอบ 4 ข้อ
- อนุญาตให้นำเครื่องคิดเลขทุกชนิดเข้าห้องสอบได้ และให้นำตำราเรียน, เอกสารทุกชนิด เข้า ห้องสอบได้
- 4. ไม่ต้องส่งกระดาษทดเลขที่แจกให้คืน

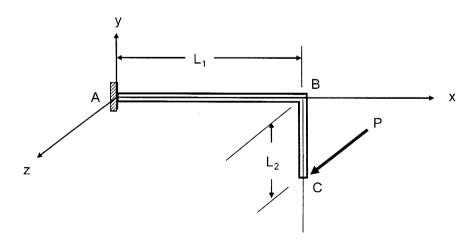

ข้อ	คะแนนเต็ม	ใต้คะแนน
1	25	
2	25	
3	25	
4	25	
5	25	
รวม		

ผู้ออกข้อสอบ: บุญ จันทร์ทักษิโณภาส

- 1. (25 marks) A member made of isotropic metal alloy (E=72.0 GPa and V = 0.33) is subjected to a combination of loads. At a point <u>on the free surface</u> which is tangential to the x-y plane, the stress components are found to be $\sigma_{xx} = 120 \ MPa$, $\sigma_{yy} = -40.0 \ MPa$, $\sigma_{xy} = -60.0 \ MPa$.
- (a) Determine the strain components and evaluate the principal strains and their directions.
- (b) Determine the magnitude of the normal component of stress acting on a plane whose normal lies in the x-y plane and making an angle of 45° with the x-axis.
- 2. (25 marks) A rectangular plate OABC of dimensions 1000 mm x 2000 mm in the x-y plane shown below is loaded so that the plate is in the state of plane strain, ($\mathbf{\mathcal{E}}_{zz} = \mathbf{\mathcal{E}}_{zy} = \mathbf{\mathcal{E}}$
- (a). Determine the displacements (u, v), of the plate for the deformation shown in term of x, y coordinates.
- (b). Determine the strain components at the point B of the plate, and evaluate the maximum line strain at B.
- (c). Determine the strain at the point D (x=1000 mm, y=1000 mm) in the direction of the line DA.



- 3. (25 marks) The stress components on a <u>free surface</u> of an isotropic member, with E = **720** GPa, $\mathbf{V} = \mathbf{0.33}$, are $\sigma_{xx} = 156.6$ MPa, $\sigma_{yy} = -49.13$ MPa, $\sigma_{xy} = 65.6$ MPa.
- (a). Determine the strain components at this free surface.
- (b) If a delta rosette is cemented to the <u>free surface</u> of the member as shown below, what would be the readings of gauges **a**, **b** and **c**?


4. (25 marks) A solid metal shaft of diameter d = 100 mm, is subjected to an axial load P, a bending moment M = 8000 N.m, and a torque T = 7000 N.m. It has been designed using a safety factor of 2.0 for all loads (ie. for M, T and P).

- (a) If yield strength for the metal is Y = 240 MPa, and assuming that failure occurs at the initiation of yielding, determine the allowable value for P based on the maximum shear-stress criterion of failure.
- (b) If the metal is a brittle material with ultimate strength, $\sigma_u = 200~MPa$, determine the allowable value for P based on the maximum principal stress criterion of failure.

5. (25 marks) A right angle bend ABC, fixed at the end A and free at the end C, is loaded at the free end by a point load P = 20 kN, acting perpendicular to the plane of the bend as shown below. The bend has a circular cross section with radius R = 0.07 m, lengths $L_1 = 1.20$ m, $L_2 = 0.60$ m, E = 200,000 MPa, G = 75,000 MPa.

- (a) Determine the translational displacement component $~\delta_{\scriptscriptstyle CZ}~$ of the free end C.
- (b) Determine the angle of twist $\; \theta_{\scriptscriptstyle CZ} \;$ of the free end C.

มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

การสอบกลางภาค: ประจำภาคการศึกษาที่ 1

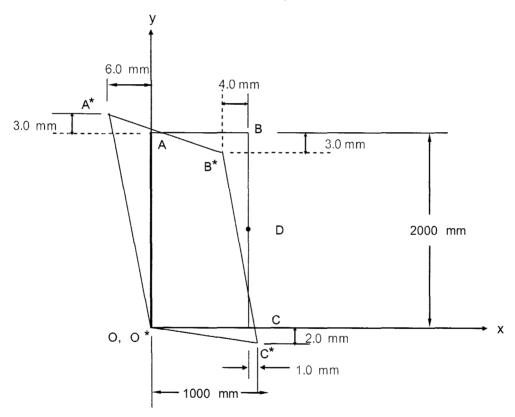
ปีการศึกษา: 2551

วันที่: 31 กรกฎาคม 2551

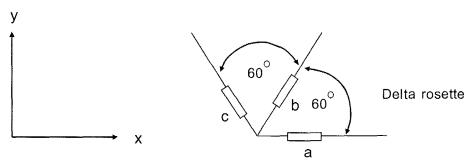
เวลา : 09.00-12.00 น.

วิชา: 220-502 Advanced Mechanics of Solids

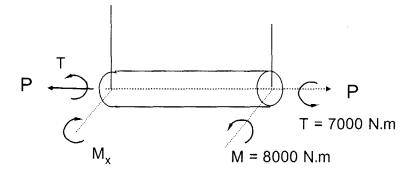
ห้อง: A400

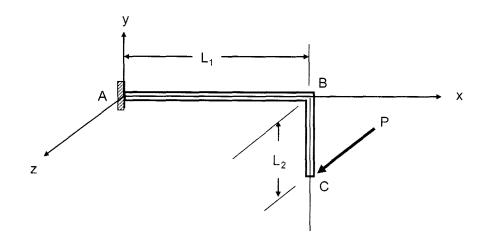

คำอธิบาย

- 1. ข้อสอบมีจำนวนทั้งหมด 5 ข้อ
- 2. ให้เลือกทำข้อสอบ 4 ข้อ
- 3. อนุญาตให้นำเครื่องคิดเลขทุกชนิดเข้าห้องสอบได้ และให้นำตำราเรียน, เอกสารทุกชนิด เข้า ห้องสอบได้
- 4. ไม่ต้องส่งกระดาษทดเลขที่แจกให้คืน


ข้อ	คะแนนเต็ม	ได้คะแนน
1	25	
2	25	
3	25	
4	25	
5	25	
รวม		

ผู้ออกข้อสอบ: บุญ จันทร์ทักษิโณภาส


- 1. (25 marks) A member made of isotropic metal alloy (E=72.0 GPa and V = 0.33) is subjected to a combination of loads. At a point <u>on the free surface</u> which is tangential to the x-y plane, the stress components are found to be $\sigma_{xx} = 120 \ MPa$, $\sigma_{yy} = -40.0 \ MPa$, $\sigma_{xy} = -60.0 \ MPa$.
- (a) Determine the strain components and evaluate the principal strains and their directions.
- (b) Determine the magnitude of the normal component of stress acting on a plane whose normal lies in the x-y plane and making an angle of 45° with the x-axis.
- 2. (25 marks) A rectangular plate OABC of dimensions 1000 mm x 2000 mm in the x-y plane shown below is loaded so that the plate is in the state of plane strain, ($\mathbf{\varepsilon}_{zz} = \mathbf{\varepsilon}_{zy} = \mathbf{\varepsilon}_{zy} = \mathbf{0}$), and passes to a new position O*A*B*C* (a). Determine the displacements (u, v), of the plate for the deformation shown in term of x, y coordinates.
- (b). Determine the strain components at the point B of the plate, and evaluate the maximum line strain at B.
- (c). Determine the strain at the point D (x=1000 mm, y=1000 mm) in the direction of the line DA.


- 3. (25 marks) The stress components on a <u>free surface</u> of an isotropic member, with E = **720** GPa, V = 0.33, are $\sigma_{xx} = 156.6 \ MPa$, $\sigma_{yy} = -49.13 \ MPa$, $\sigma_{xy} = 65.6 \ MPa$.
- (a). Determine the strain components at this free surface.
- (b) If a delta rosette is cemented to the <u>free surface</u> of the member as shown below, what would be the readings of gauges **a**, **b** and **c**?

- 4. (25 marks) A solid metal shaft of diameter d = 100 mm, is subjected to an axial load P, a bending moment M = 8000 N.m, and a torque T = 7000 N.m. It has been designed using a safety factor of 2.0 for all loads (ie. for M, T and P).
- (a) If yield strength for the metal is Y = 240 MPa, and assuming that failure occurs at the initiation of yielding, determine the allowable value for P based on the maximum shear-stress criterion of failure.
- (b) If the metal is a brittle material with ultimate strength, $\sigma_u = 200~MPa$, determine the allowable value for P based on the maximum principal stress criterion of failure.

- 5. (25 marks) A right angle bend ABC, fixed at the end A and free at the end C, is loaded at the free end by a point load P = 20 kN, acting perpendicular to the plane of the bend as shown below. The bend has a circular cross section with radius R = 0.07 m, lengths $L_1 = 1.20$ m, $L_2 = 0.60$ m, E = 200,000 MPa, G = 75,000 MPa.
- (a) Determine the translational displacement component $\; \delta_{\scriptscriptstyle CZ} \;$ of the free end C.
- (b) Determine the angle of twist $\; \theta_{\scriptscriptstyle CZ} \;$ of the free end C.

มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

การสอบกลางภาค: ประจำภาคการศึกษาที่ 1

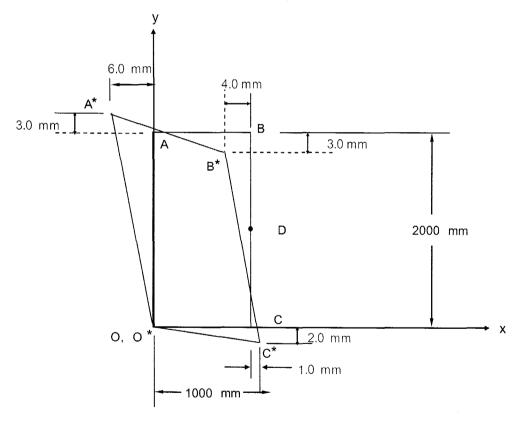
ปีการศึกษา: 2551

วันที่: 31 กรกฎาคม 2551

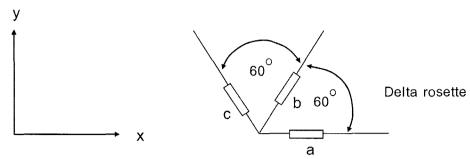
เวลา: 09.00-12.00 น.

วิชา: 220-502 Advanced Mechanics of Solids

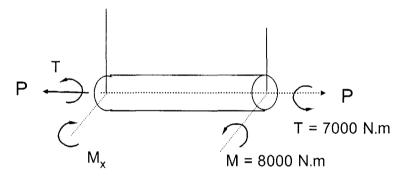
ห้อง: A400

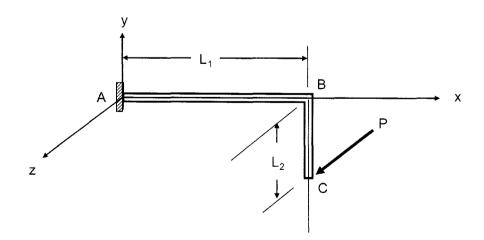

คำอธิบาย

- 1. ข้อสอบมีจำนวนทั้งหมด 5 ข้อ
- 2. ให้เลือกทำข้อสอบ 4 ข้อ
- 3. อนุญาตให้นำเครื่องคิดเลขทุกชนิดเข้าห้องสอบได้ และให้นำตำราเรียน, เอกสารทุกชนิด เข้า ห้องสอบได้
- 4. ไม่ต้องส่งกระดาษทดเลขที่แจกให้คืน


ข้อ	คะแนนเต็ม	ได้คะแนน
1	25	
2	25	
3	25	
4	25	
5	25	
รวม		

ผู้ออกข้อสอบ: บุญ จันทร์ทักษิโณภาส


- 1. (25 marks) A member made of isotropic metal alloy (E=72.0 GPa and V = 0.33) is subjected to a combination of loads. At a point <u>on the free surface</u> which is tangential to the x-y plane, the stress components are found to be $\sigma_{xx} = 120 \ MPa$, $\sigma_{yy} = -40.0 \ MPa$, $\sigma_{xy} = -60.0 \ MPa$.
- (a) Determine the strain components and evaluate the principal strains and their directions.
- (b) Determine the magnitude of the normal component of stress acting on a plane whose normal lies in the x-y plane and making an angle of 45° with the x-axis.
- 2. (25 marks) A rectangular plate OABC of dimensions 1000 mm x 2000 mm in the x-y plane shown below is loaded so that the plate is in the state of plane strain, ($\varepsilon_{zz} = \varepsilon_{zx} = \varepsilon_{zy} = 0$), and passes to a new position O*A*B*C*
- (a). Determine the displacements (u, v), of the plate for the deformation shown in term of x, y coordinates.
- (b). Determine the strain components at the point B of the plate, and evaluate the maximum line strain at B.
- (c). Determine the strain at the point D (x=1000 mm, y=1000 mm) in the direction of the line DA.


- 3. (25 marks) The stress components on a <u>free surface</u> of an isotropic member, with E = **720** GPa, $\mathbf{V} = \mathbf{0.33}$, are $\sigma_{xx} = 156.6 \ MPa$, $\sigma_{yy} = -49.13 \ MPa$, $\sigma_{xy} = 65.6 \ MPa$.
- (a). Determine the strain components at this free surface.
- (b) If a delta rosette is cemented to the <u>free surface</u> of the member as shown below, what would be the readings of gauges **a**, **b** and **c**?

- 4. (25 marks) A solid metal shaft of diameter d = 100 mm, is subjected to an axial load P, a bending moment M = 8000 N.m, and a torque T = 7000 N.m. It has been designed using a safety factor of 2.0 for all loads (ie. for M, T and P).
- (a) If yield strength for the metal is Y = 240 MPa, and assuming that failure occurs at the initiation of yielding, determine the allowable value for P based on the maximum shear-stress criterion of failure.
- (b) If the metal is a brittle material with ultimate strength, $\sigma_{u}=200~MPa$, determine the allowable value for P based on the maximum principal stress criterion of failure.

- 5. (25 marks) A right angle bend ABC, fixed at the end A and free at the end C, is loaded at the free end by a point load P = 20 kN, acting perpendicular to the plane of the bend as shown below. The bend has a circular cross section with radius R = 0.07 m, lengths $L_1 = 1.20 \text{ m}$, $L_2 = 0.60 \text{ m}$, E = 200,000 MPa, G = 75,000 MPa.
- (a) Determine the translational displacement component $~\delta_{\scriptscriptstyle CZ}~$ of the free end C.
- (b) Determine the angle of twist $\; \theta_{\scriptscriptstyle CZ} \;$ of the free end C.

