มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

การสอบกลางภาค ประจำภาคการศึกษาที่ 1 สอบวันที่ 31 กรกฎาคม2551 วิชา 220-528 Soil Dynamics

ปีการศึกษา 2551 เวลา 13.30-16.30 น. ห้องสอบ A 401

ข้อกำหนด·

- 1. ข้อสอบ มี 4 ข้อ คะแนนเต็ม 100 คะแนน ให้ทำทุกข้อ
- 2. ให้นำสมุด Lecture, Sheet และ หนังสือ เข้าห้องสอบได้
- 3. ให้นำเครื่องคิดเฉขทุกชนิดเข้าห้องสอบได้

ออกข้อสอบโคย คร. พิพัฒน์ ทองฉิม 25 กรกฎาคม 2551

1. A machine and its foundation weigh 400 kN. The spring constant and the dashpot coefficient of the soil supporting the soil may be taken as 120,000 kN/m and 2,300 kN-s/m, respectively. Force vibration of the foundation is caused by a force that can be expressed as $Q(kN) = Q_0 \sin \Omega t$, $Q_0 = 80 \text{ kN}$ and $\Omega = 1,200 \text{ rad/min}$.

Determine

- 1.1 the damped natural frequency of the foundation,
- 1.2 the damping ratio,
- 1.3 the ratio of two successive amplitude, and
- 1.4 the magnitude of maximum dynamic force

(30 points)

2. Consider the layered soil deposit shown below. Determine and plot the paths of the refracted and reflected rays if an incident raypath strike the lowest boundary at a 45° angle. Show only the first reflection and refraction at each layer boundary.

(25 points)

V = 180 m/sec		4 m
V = 400 m/sec		5 m
V = 550 m/sec		7 m
V = 720 m/sec	•	llm
V = 1000 m/sec		
	Incident p-wave	

3. For a reflection survey refer to Figure 4.48 in Das 's book (1993), in which A is the shot point. Distance AC=AE= 180 m. The times for arrival of the first reflected wave at point C and E are 45.0 ms and 64.1 ms, respectively. If the P-wave velocity in layer 1 is 280 m/s, determine β and Z'.

(15 points)

4. A layer of clay deposit extends to a depth of 50 ft below the ground surface. The groundwater table coincides with the ground surface. Given, the clay: void ratio = 1.3, specific gravity of soil solids = 2.70, plasticity index = 50% overconsolidation ratio = 4. Determine the shear modulus and damping ratio of this clay at a depth of 40 ft. for the fifteenth cycle at strain level of 0.1%, assuming that the frequency (f) is about 0.5 Hz. Given $K_{0(OCR)} = K_{0(NC)}(OCR)^{0.5}$ (30 points)