PRINCE OF SONGKLA UNIVERSITY

FACULTY OF ENGINEERING

Final Examination: Semester 1 Academic Year: 2008

Subject Number: 241-530 Room: R200

Subject Title: Parallel and Distributed Computing

Exam Duration: 3 hours

This paper has 11 pages, 6 questions and 120 marks (30%).

Authorised Materials:

• Writing instruments (e.g. pens, pencils).

• Textbooks, a notebook, handouts, and dictionaries are permitted.

Instructions to Students:

- Scan all the questions before answering so that you can manage your time better.
- Answers must be written in Thai.
- Write your name and ID on every page.
- Any unreadable parts will be considered wrong.

When drawing diagrams or coding, use good layout, and short comments; marks will not be deducted for minor syntax errors.

Cheating in this examination

Lowest punishment: Failed in this subject and courses dropped for next

semester.

Highest punishment: Expelled.

Question 1	(46 marks; 50 minutes)
a) Which type of problems is non-par	rallelizable? (2 mark)
b) What are factors that contribute to	parallel overhead? (2 marks)
c) Explain how to do automatic para and inform the tradeoffs.	llelization, tell when to choose which method (4 marks)
d) Compare parallel computing and s	verial computing. (6 marks)
Parallel computing	Serial computing

ID

e) What are the differences between *communication* and *synchronization*? (4 marks)

Communication	Synchronization

f) Compare the two Interconnection media types: Shared Medium and Switched Medium? (4 marks)

Shared Medium	Switched Medium
	1

lame		ID	

para	llel software?	ooioin and the pre		first step in develop arks)
h) Wha	at are the differ	ences between Unccess (NUMA)?	niform Memory Ac	ccess (UMA) and N
	UMA		N	UMA
		į		

ID_

i) Compare Shared Memory and Distributed Memory architecture? (10 marks)

Shared Memory	Distributed Memory

lame	ID	

Question 2	(18 marks;	20 minutes)	
------------	------------	-------------	--

	deoffs.					
a)	2D Mesh Network					
					-	
)	Crossbar Network					
			<u>.</u>			
						 _
· ·	Multistage Network					
<i>:)</i>	Multistage Network					
		*** **********************************				
		- 1/4-1/1	- 1			
_						
						
Nai	me			ID		

d)	Hypercube Netwo	ork			
		<u></u>	 	 	
			 	 · -	
_			 		
			 	 	
		<u></u>	 	 	
_		<u> </u>	 	 	
e)	Tree Network		 	 	
٠,	1100 1100000111				
_				 	
 f)	Ring Network				
		128	 	 74	
_					

ID

Ques	tion 3 (16 marks; 20 minutes)
Fro	m Amdahl's Law, find out the speed up if the scenario as follows.
a)	Explain the effects of each parameter in the Amdahl's law
b)	Find the speedup when there are 2 processors and 40% parallelizable code
c)	Find the speedup when there are 2 processors and 80% parallelizable code
d)	Find the speedup when there are 10 processors and 40% parallelizable code
e)	Find the speedup when there are 10 processors and 80% parallelizable code
f)	Find the speedup when there are 100 processors and 40% parallelizable code
g)	Find the speedup when there are 100 processors and 80% parallelizable code
Qu	estion 4 (10 marks; 10 minutes)
Exprobl	plain the following problems associated with shared data and how to solve the ems.
a)	Cache Coherence
Nan	neID

Question 5	(10 marks; 10 minutes)
Tell whether the following equations non-par decompose the parts of the equations.	allelizable. Also show how to
a) $G(i) = G(i-2) - G(i-1) + G(i-3)$	
b) $H(a) = A(a) + B(a)$	
c) $F(J+1) = 9.0 * F(J) + X(j) * W(j)$	
d) $K(n) = K(n-1) * n if n > 0 and = 1 if n = 0$	
e) $F(x,y,z) = (\text{square root of } ((x+y)^2 - (x-z)^3))/xy$	YZ.

ID_

Question 6	(20 marks; 40 minutes)
Question o	(20 marks, 40 mmates)

Write *Data Dependence Graph* and *pseudo code using the MPI operations* that parallelizes the following execution.

For i = 1 to 10 For j=1 to 1000 For k=1 to 5 $F(i, j, k) = (A(i)+B(j))^k$ When A and B are 1D arrays and F is a 3D array.

	,							
			· · · · ·					
		· · · · · · · · · · · · · · · · · · ·						
								-
				,, ,		. 100		
								
						*****	<u></u>	
		***	· · · · · · · · · · · · · · · · · · ·			<u></u>		-
			<u></u>					
						10		
						···		
				<u> </u>				-
				····	-	··· <u>-</u>		