PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination: Semester 1

Academic Year: 2008

Date: July 29, 2008

Time: 9:00-12:00

Subject: 226-331: Industrial Automatic Control

Room: A202

ทุจริตในการสอบ โทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

Instructions

- There are 6 questions in 4 pages.
- Attempt all questions; write the answer in the answer-book provided.
- A sheet of A4 notes (With your own hand-writing), and a calculator without programming capability are allowed.
- Total score is 100.

Name:	Student ID
!	

Question #	Full Score	Assigned Score
1	15	
2	20	
3	15	
4	15	
5	15	
6	20	
Total	100	

Assoc. Prof. Somchai Chuchom

Name.....ID.....

Question #1 (15 marks)

Automatic control of water level using a float level was used in the Middle East for a water clock. The picture of the water clock was shown in Figure 1. Discuss the operation of the water clock, and establish how the float provides a feedback control that maintains the accuracy of the clock. Sketch a block diagram of the feedback system.

Figure 1 Water clock used in the Middle East

Question #2 (20 marks)

2.1 Solve the differential equation

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 5e^{-2t} + t$$

Where
$$x(0) = 2$$
; $\frac{dx(0)}{dt} = 1$

2.2 Solve the differential equation for Y(s)

$$\frac{d^{3}y}{dt^{3}} + 3\frac{d^{2}y}{dt^{2}} - \frac{dy}{dt} + 6y = \frac{d^{2}x}{dt^{2}} - x$$

where y is the output; x is the input

with the initial conditions:
$$y(0^+) = \frac{dy}{dt}\Big|_{t=0^+} = 0; \quad \frac{d^2y}{dt^2}\Big|_{t=0^+} = 1$$

Name......ID.....

Question #3 (15 marks)

Determine the response, y(t), and its steady state response, $y(t)_{t\to\infty}$ of the system represented by the differential equation

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = 2r(t)$$

where $r(t) = 1, t \ge 0$

with the initial conditions: y(0) = 1, $\frac{dy(0)}{dt} = 0$

Question #4 (15 marks)

Determine the transfer function, $T(s) = \frac{Y(s)}{R(s)}$, of the block diagram of the system shown in

Figure 2.

Figure 2

Question #5 (15 marks)

Given the mechanical system shown in Figure 3.

- 5.1 Draw the Grounded-Chair diagram for the system.
- 5.2 Determine the relationship between f and x.

Figure 3

Name	ID

Question #6 (20 marks)

6.1 Explain why the PID controller gains wide acceptance.

6.2 Draw a block diagram of the pneumatic controller shown in Figure 4, and determine its Transfer Function. Also specify what control action it is.

Figure 4

W