มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

การสอบกลางภาค ประจำภาคการศึกษาที่ 1	ประจำปีการศึกษา 255
วันที่ 31 กรกฎาคม 2551	เวลา 09.00-12.00 น.
วิชา 215-231 Thermodynamics II,	ห้อง A 401
216-332 Engineering Thermodynamics II	

<u>คำสั่ง</u>

- 1. ข้อสอบมีทั้งหมด 4 ข้อ ให้ทำทุกข้อ
- 2. อนุญาตให้นำเครื่องคิดเลขเข้าห้องสอบได้

ชื่อ-สกุล	รหัส
ขอ-ยานุย	4 [1 pt

ข้อ	คะแนน
1	
2	
3	
4	
รวม	

รศ.คร.ชูเกียรติ คุปตานนท์ ผู้ออกข้อสอบ

ทุจริตในการสอบ โทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

4	e e
ชื่อ-สกุล	รห์ส

- 1. A steam power plant operates on an ideal reheat-regenerative Rankine cycle and has a net power output of 120 MW. Steam enters the high-pressure turbine at 10 MPa and 550°C and leaves at 0.8 MPa. Some steam is extracted at this pressure to heat the feedwater in an open feedwater heater. The rest of the steam is reheated to 500°C and is expanded in the low-pressure turbine to the condenser pressure of 10 kPa. Show the cycle on a *T-s* diagram with respect to saturation lines, and determine;
 - (a) the mass flow rate of steam through the boiler and,
 - (b) the thermal efficiency of the cycle.

di	υ v
ช่อ-สกุล	รหส

2. An ice-making machine operates on the ideal vapor-compression cycle, using refrigerant-12. The refrigerant enters the compressor as saturated vapor at 160 kPa and leaves the condenser as saturated liquid at 700 kPa. Water enters the ice machine at 15°C and leaves as ice at -5°C.

For an ice production rate 12 kg/h., determine the power input to the ice maker (384 kJ of heat needs to be removed from each kilogram of water at 15°C, to turn it into ice at -5°C).

,	
A A	ω
ช่อ-สกุล	รหล
#U " 611 J 61	. d[b

3. Air is used as the working fluid in a simple Brayton cycle which has a pressure ratio of 12, a compressor inlet temperature of 27°C, and a turbine inlet temperature of 727°C.

Determine the required mass flow rate of air for a net power output of 30 MW, assuming both the compressor and the turbine have an isentropic efficiency of (a) 100 percent and, (b) 80 percent.

,		
4		v .
 ชด_ส <i>เ</i>	ງຄີ	รหส
DO 911	<u>]</u> bl	d [b

4. a) Using the Clapyron equation, estimate the enthalpy of vaporization of refrigerant-12 at 30°C, and compare it with the tabulated value.

- b) Starting with the relation dh = T ds + vdP, show that the slope of a constant-pressure line on an h-s diagram;
 - (a) is constant in the saturating region and,
 - (b) increases with temperature in the superheat region.