มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

การสอบกลางภาค ประจำภาคการศึกษาที่ 1 วันที่ 31 กรกฎาคม 2551 วิชา 215-391 Fundamental of Mechanical Epngineering,

216-391 Fundamental of Mechanical Engineering

ประจำปีการศึกษา 2551

เวลา 13.30-16.30 น.

ห้อง R 201

<u>คำสั่ง</u>

- 1. ข้อสอบมีทั้งหมด 5 ข้อ ทำทุกข้อ
- 2. อนุญาตให้นำเครื่องคิดเลขเข้าห้องสอบได้
- 3. ไม่อนุญาตให้นำเอกสารใด ๆ เข้าห้องสอบ

ชื่อ-สกุล	รหัส
ขย-ถาวุถ	4 KI 61

ข้อ	คะแนน
1	
2	
3	
4	
5	
รวม	

รศ.คร.ชูเกียรติ คุปตานนท์ ผู้ออกข้อสอบ

ทุจริตในการสอบ โทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

٨	e e
ชื่อ-สกุล	รหส

1. a) Water at a mean temperature of 20°C flows over a flat plate at 80°C. If the heat transfer coefficient is 200 W/m²°C.

Determine the heat flux of the plate over 5 hours.

b) A sphere 10 cm in diameter is suspended inside a large evacuated chamber whose walls are kept at 27°C. If the surface of the sphere has emissivity of 0.8 and is maintained at 227°C.

Determine the rate of heat loss from the sphere to the wall of the chamber.

di	ى د
ชื่อ-สกล	รห์ส

- 2. The inside surface of a brick wall 10 cm. thick ($k = 1 \text{ W/m}^{\circ}\text{C}$) is at temperature 930°C, and the outer surface is exposed to an ambient at 30°C with a heat transfer coefficient 20 W/m² °C.
 - a) What is the temperature of the outer surface?
- b) Calculate the thickness of the insulation layer ($k = 0.1 \text{ W/m}^{\circ}\text{C}$) needed on the outer surface such that the surface of the insulation layer exposed to air will not exceed 90°C.

	e e
อ-สกล	รหส
U-611261	dfibl

- 3. A steam pipe of outside radius 4 cm. is covered with layer of asbestos insulation of thickness 1 cm ($k = 0.15 \text{ W/m}^{\circ}\text{C}$) which is covered in turn with a fiber glass insulation of thickness 3 cm. ($k = 0.05 \text{ W/m}^{\circ}\text{C}$). The surface of the steam pipe is at 330°C, and the outside surface of the fiber glass insulation is at 30°C
 - a) Determine the interface temperature between the asbestos and fiver glass insulations.
 - b) Determine the heat transfer rate per 1 m. length of pipe.

1	
Á	٥
ka ବାରବ	59824
ชื่อ-สกุล	J 71 61

4. A 3 cm. diameter aluminum sphere [$k = 204 \text{ W/m}^{\circ}\text{C}$, $\rho = 2700 \text{ kg/cm}^{3}$, and $C_{p} = 0.896 \text{ kJ/kg}^{\circ}\text{C}$] is initially at 175°C. It is suddenly immersed in a well-stirred fluid at 25°C. The temperature of the sphere is lowered to 100°C in 42 second.

Calculate the heat transfer coefficient.

લું	٠.
ชื่อ-สกุล	รหส
νо-ыпуы «	d [b

5. A counter flow shell-and-tube heat exchanger is to be used to cool water from $22^{\circ}C$ to $6^{\circ}C$ by using brine entering at $-2^{\circ}C$ and leaving at $3^{\circ}C$. The overall heat transfer coefficient is 500 W/m² °C.

Calculate the that transfer surface area for a design heat load of 10 kW.