Name:	Student ID No:

Faculty of Engineering Prince of Songkla University

การสอบกลางภาคการศึกษาที่ 1 วัน พุธ ที่ 30 ก.ค. 2551 วิชา 237-322 Metallic Materials

ปีการศึกษา 2551 เวลา 13:30 – 16:30 น.

ห้อง R200

<u>คำสั่ง</u>

- (1) เขียนคำตอบให้สมบูรณ์ทุกข้อเพื่อให้ได้คะแนนเต็ม
- (2) ให้เอา Note ขนาด A4 ที่เขียนด้วยลายมือเข้าได้ (ห้ามถ่ายเอกสาร)
- (3) ให้เอา Calculator และ Dictionary เข้าห้องสอบได้
- (4) อ่านคำสั่งให้ละเอียด และตอบทุกคำถาม

ทุจริตในการสอบโทษขั้นต่ำคือปรับตกในรายวิชาที่ทุจริตและพักการศึกษา 1 ภาคการศึกษา

Question No.	Point	Result
1	20	
2	20	
3	10	
4	10	
5	10	
6	20	
7	10	
	Total	

Student ID No:	
ms (20 points).	

1.4 Weld Decay

2. Basic Metallurgy (20 points)

From the phase diagram above, answer the following questions:

a) Draw the microstructure at point 1 at 800°C. Also identify the phases and the amount of each phase. Show your work clearly. (10 points)

b) Draw the microstructure of the metal at points 2 and 3 when the metal is cooled down with moderate cooling rates from the liquid phase to the room temperature. The metal contains some Mg and very low amount of S and P (10 points)

3. Basic Metallurgy (10 points)

From the microstructure evolution above, we can see the grains of α phase nucleating at the grain boundary. Explain clearly why the grains of α phase nucleate on the grain boundary.

4. Roles of Alloying Elements (10 points)

We want to invent a new alloy steel with the following properties. Give <u>one</u> alloying element that will give us the right properties.

- a. We want a very hard surface after we perform nitriding treatment.
- b. We want very fine grain structure for room temperature strength.
- c. We want very good wear and impact resistance at the surface.
- d. We want to easily machine this steel.

Name:	Student ID No:	

5. High Alloy Steels (10 points)

A ferritic stainless steel containing 16% Cr and 0.05% C will give ferrite phase at room temperature. Assuming that you are an engineer working in a casting company.

a) Your manager orders you to make this ferritic stainless steel into a <u>martensitic stainless steel</u>, explain how to do it. (5 points)

b) Your manager also orders you to make this ferritic stainless steel into an <u>austenitic stainless steel</u>, explain how to do it. (5 points)

6. Cast Irons (20 points)

Assuming that your company wants to produce a cast iron with the following microstructure:

You remember that you have learned this from 237-322 Metallic Materials that there are two types of cast irons with this microstructure.

a. What are the 2 types of cast irons? [Give the full names] (10 points)

Name:	Student ID No:
b.	Your boss asks you to produce these two cast irons. Explain clearly how to produce these two cast irons. (10 points)
	Production Processes of Cast Iron 1:
	Production Processes of Cast Iron 2:
7. Stren	gthening Mechanism (10 points)
Precip	pitation hardening is the hardening process used in maraging steel.
a) E	xplain how precipitation hardening helps increase strength. (5 points)
b) M w	araging steel is not recommended for use at high temperatures. Explain hy maraging will loose strength at high temperatures. (5 points)