Prince of Songkla University

Faculty of Engineering

Midterm Examination: Semester II

Academic Year 2008

Monday, December 22, 2008

Time 13:30-16:30

220-506 Stability of Structures

Room A201

Instructions.

- 1. There are 3 questions with equal marks.
- 2. Attempt all questions.
- 3. Books and notes are allowed.
- 4. Pencils are recommended to be used in answering the questions.

Instructor: Fukit Nilrat

- 1. (30 marks) Find the critical loads P_{cr} of the rigid bar-spring systems shown in Figure 1.1 and Figure 1.2.
- 2. (30 marks) Find the characteristic equation that may be used to solve for the buckling load of the continuous beam shown in Figure 2 by using the second-order differential equation.
- 3. (30 marks) For the beam-column shown in Figure 3.1, the deflection equations are given as

$$y(x) = \frac{Q}{EI\lambda^3} \frac{\sin \lambda (l-a)}{\sin \lambda l} \sin \lambda x - \frac{Q(l-a)}{EI\lambda^2 l} \times$$

$$y(x) = \frac{Q}{EIR^{3}} \frac{\sin h(l-a)}{\sin hl} \sin hx - \frac{Q(l-a)}{EIR^{2}l} \times$$

$$y(x) = -\frac{Q}{EIR^{3}} \frac{\sin ha}{\tan hl} \sin hx + \frac{Q\sin ha}{EIR^{3}} \cos hx - \frac{Qa(l-x)}{EIR^{2}l}$$
For the beam-column shown in Figure 3.2

For the beam-column shown in Figure 3.2

- (a) Determine the maximum deflection y_0 for the beam-column shown in Figure 3.2 when the axial load P = 0.
- (b) The maximum deflection y_{max} for the beam-column shown in Figure 3.2 when the axial load P is present can be expressed as $y_{max} = y_0 A_F$. By using the principle of superposition, find the deflection amplification factor A_F in terms of u where $u = \lambda l/2$.

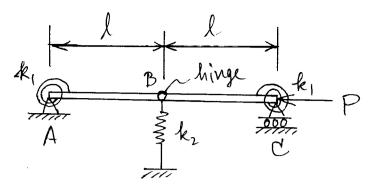
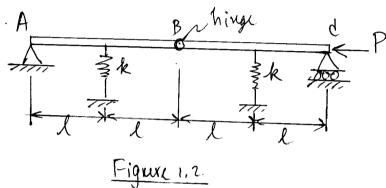
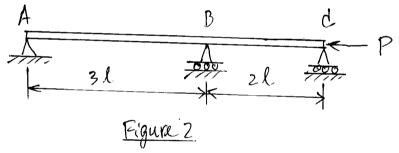
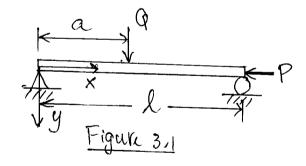





Figure 1.1

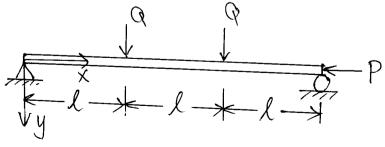


Figure 3,2