PRINCE OF SONGKLA UNIVERSITY **FACULTY OF ENGINEERING**

Final Exam : Semester II

Academic Year: 2008

Date

: December 25, 2008

Time

: 9:00-12:00

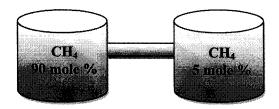
Subject

: Unit Operations I (230-323)

Total pages : 10 (inc. front page)

Room

: หัวหุ่นยนต์


NAME STUDENT ID

อนุญาตให้นำเอกสารและเครื่องคำนวณทุกชนิดเข้าห้องสอบ <u>ทุจริตในการสอบโทษขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต</u> และพักการศึกษา 1 ภาคการศึกษา

Question #	Total Score	Score
1	20	
2	25	
3	25	
4	20	
5	20	
Total	110	

คร. พรศิริ แก้วประดิษฐ์ ผู้ออกข้อสอบ

1. (20 points), A large tank filled with a mixture of methane and air is connected to a second tank filled with a different composition of methane and air. Both tanks are at 100 kN/m² and 0°C. The connection between the tanks is a tube of 2 mm inside diameter and 150 mm long. Assume that transport between the tanks is by molecular diffusion. The mass diffusivity of methane in air at 0°C and 100 kN/m² is 1.57×10⁻⁵ m²/s.

- 1.1. (5 points), plot concentration gradient of methane
- **1.2.** (15 points), calculate the steady-state rate of transport of methane through the tube in mol/s

- 2. (25 points) An open cylindrical tank 7 m in diameter contains ethanol at 25°C exposed to the atmosphere. The air within the tank is stationary and the alcohol is vaporized through an air film 0.5 cm thick. The vapor pressure of ethanol at 25°C is 54.68 mmHg. The concentration of ethanol beyond the film is negligible.
 - 2.1. (10 points), estimate diffusion coefficient in m²/hr
 - **2.2.** (10 points), calculate rate of vaporization in liter/hr, where the specific gravity of ethanol is 0.79
 - **2.3.** (5 points), if ethanol is worth 24 baht/liter, what is the value of the loss of ethanol from this tank per day.

- 3. (25 points) A wetted-wall column 5 cm in diameter contains air and CO₂ flowing at 0.9 m/s. At one point in the column, the CO₂ concentration in the air is 0.1 mole fraction. At the same point in the column, the vapor pressure of CO₂ at the interface is 8.2 atm. The column operates at 10 atm and 25°C.
 - 3.1. (10 points), at this condition the air is turbulent or laminar flow
 - **3.2.** (10 points), estimate mass-transfer coefficient in kmole/hr.m³, if diffusivity is 0.164 cm²/s at 25°C, 1 atm
 - 3.3. (5 points), calculate the flux in kmole/hr.m²

4. (20 points) Calculate the rate of diffusion of acetic acid, CH₃COOH (A) in kmol/s.m² across a film of non-diffusing water (B) solution 1 mm thick at 17°C when the concentrations on opposite sides of the films are, respectively 9 and 3 wt% acid (Note that density of 9% and 3% solution is 1012 and 1003 kg/m³ respectively). The diffusivity of acetic acid in the solution is 0.95×10^{-9} m²/s.

5. (20 points) Calculate the effective film thickness in μm for diffusion from the wall of a 3 cm ID pipe, when the average fluid velocity u=1.8 m/s, $\rho=1050$ kg/m³, $\mu=5$ cP and $D_{AB}=2\times10^{-6}$ cm²/s.