คณะวิศวกรรมศาสตร	f		
มหาวิทยาลัยสงขลานครินทร์			
การลอบปลายภาก ประจำภากการศึกษาที่ ๒	ประจำปีการศึกษา ๒๕๕๑		
วันเสาร์ที่ ๒๗ ธันวากม พ.ศ. ๒๕๕๑	เวลา ๙.୦୦-ଈଅ.୦୦ ૠ.		
วิชา ๒๑๕-๓๒๙/๒๑๖-๓๒๙: กลศาสตร์เกรื่องจักรกล	ห้องสอบ A401		

<u>คำสั่ง</u>

- ข้อสอบมีทั้งหมด ๕ ข้อ ให้ทำลงในข้อสอบทุกข้อ
- ษ. อนุญาตให้ใช้เกรื่องกิดเลขได้
- ๓. ให้ใช้เครื่องมือเรียนแบบได้
- ๔. ไม่อนุญาตเอกสารอื่น ๆ

รศ.คร. วรวุช วิลุทธิ์เมชางกูร ผู้ออกข้อสอบ

ช้อ	คะแนนเต็ม	ได้
•	Jao	
ъ .	bo	
en .	Jeno	
«	bo	
e	Jao	
รวม	900	

1)

(a) Determine the mobility of this mechanism.

(b) Determine the mobility of this mechanism.

(c) How many inversions does it have, including the one shown ?

(d) How many poles (instantaneous centers) does this mechanism have? Locate at least 10 of them in the figure.

- 2) The 4 bar mechanism shown has a 20 mm long crank (link 2, O₂A), a 50 mm long coupler (link 3, AB), and a 40 mm long output link (link 4, O4B) as shown.
 - (a) Draw the mechanism at its limit positions where link 4 is at the right most and left most positions.
 - (b) If link 2 is rotating with a constant speed, assuming the advance stroke link 4 is moving to the right, which direction must ω_2 be so that this mechanism is a quick-return ?
 - (c) Determine the time ratio between the advance stroke and the return stroke.

02

3) The 6-bar mechanism is as shown in the figure, with R_{AO2} = 20 mm, R_{AB} = 50 mm, R_{O4B} = 30 mm, R_{O4B} = 30 mm, R_{O2O4} = 20 mm, and R_{O2O6} = 40 mm. Link 2 is now at 180° ccw from x-axis and rotating with an angular velocity of 2 rad/s counterclockwise. Determine the angular velocities of links 3, 4, 5, and 6.

Scale 1 mm : 1 mm/s

+0v

Name		
Name	•	
INGILIE	•	

Student ID # :	
Student ID # :	

4) At this position of the mechanism, link 2 is moving to the right with a speed of 30 mm/s, and the acceleration of 2 mm/s 2 . Do the velocity analysis and find velocity of point B, V_B , and angular velocity of link 3. Then do the acceleration analysis to find the angular acceleration of link 3.

Scale 1 : 1

Scale 1 mm : 1 mm/s^2 Oa_ 04

Scale 1 mm : 1 mm/s

5) In the mechanism shown, link 2 is having constant angular velocity of 1 rad/s counterclockwise. The velocity polygon is provided as shown. Find the angular velocity of links 3 and 4. Do the acceleration analysis and find the angular acceleration of link 3.

Scale 1 mm : 1 mm/s^2 Oa