มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

การสอบกลางภาค ประจำภาคการศึกษาที่ 2 ประจำปีการศึกษา 2551 วันที่ 24 ธันวาคม 2551 เวลา 13.30-16.30 น. วิชา 215-332 Heat Transfer, ห้อง R 200 216-333 Heat Transfer ห้อง A 201

คำสั่ง

- 1. ข้อสอบมีทั้งหมด 5 ข้อ ให้ทำทุกข้อ
- 2. ไม่อนุญาตตำรา / เอกสารเข้าห้องสอบ
- 3. อนุญาตเครื่องคิดเลขเข้าห้องสอบได้

ชื่อ-สกุล	รหัส
-----------	------

ข้อ	คะแนน
1	
2	
3	
4	
5	
รวม	

รศ.คร.ชูเกียรติ คุปตานนท์ ผู้ออกข้อสอบ

ทุจริตในการสอบ โทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

ี่ย-สกุล	รหัส
1. a) Write short notes on the following;	
i) Thermal diffusivity	
••••••	
ii) Fourier's law	
iii) Newton's law of cooling	
••••••	
iv) Grey body	
v) View factor	

4	••
ชื่อ-สกุล	รหัส

b) A horizontal steel pipe having a diameter of 50 mm. is maintained at a temperature of 50°C in a large room where the air and wall temperature are at 20°C. The surface emissivity of the steel may be taken as 0.8.

Calculate the total heat loss by the pipe per unit length.

Given $h = 6.5 \text{ W/m}^2 {}^{\circ}\text{C}$ and $\sigma = 5.669 \times 10^{-8} \text{ W/m}^2 \text{ K}^4$.

A	
ਜ਼ੀ ਅਤੇ ਕਾਰਤ	o
ชื่อ-สกุล	รหส

- 2. The inside surface of a brick wall of 10 cm. thick $[k_b = 1 \text{ W/(m .°C)}]$ is at 930°C, and the outer surface is exposed to an ambient at 30°C with a heat transfer coefficient of 20 W/(m². °C).
 - (a) What is the temperature of the outer surface?
- (b) Calculate the thickness of the insulation layer $[k=0.1 \text{ W/(m .}^{\circ}\text{C})]$ needed on the outer surface such that the surface of the insulation layer exposed to air will not exceed 90°C .

4	
4K 01_74 F174	~ ~
ชื่อ-สกุล	าหา
2 • • • • • • • • • • • • • • • • • • •	

3. A conductor with 0.8 cm diameter carrying an electric current passes through an ambient at 30° C with a convective heat transfer coefficient of 120 W/(m² . °C). The temperature of the conductor is to be maintained at 130° C.

Calculate the rate of heat loss per 1-m length of the conductor for;

- (a) the bare conductor and,
- (b) the conductor covered with Bakelite [$k = 1.2 \text{ W/(m} \cdot ^{\circ}\text{C})$] with radius corresponding to the critical radius of the insulator.

۵		u د
34	อ-สกุล	ଟ ଓ ଜିଲା
Ш	U-61[[6]	าทถ

4. A grape of 1 cm. diameter ($k = 0.6 \text{ W/m}^{\circ}\text{C}$, $\rho = 1100 \text{ kg/m}^{3}$, and $C_p = 4.2 \text{ kJ/kg}^{\circ}\text{C}$), initially at a uniform temperature of 20°C, is placed in a refrigerator in which the air temperature is 5°C. If the heat transfer coefficient between the air and the grape is 20 W/m²°C.

Determine the time required for the grape to reach 10°C.

5. A large brick wall ($\alpha = 5 \times 10^{-7} \, \text{m}^2/\text{s}$, $k = 2.7 \, \text{W/m}^{\,\circ}\text{C}$) of 20 cm. thick is initially at a uniform temperature of $100^{\,\circ}\text{C}$. Suddenly both of its surfaces are lowered to $20^{\,\circ}\text{C}$ and maintained at that temperature for time t > 0.

Using a mesh size of 5 cm., and an explicit finite scheme;

- a) Calculate the temperature distribution at the nodes for 5 consecutive time steps,
- b) Calculate the heat flux at the boundary surface (x = 20 cm.) at the end of time step 5.

(Using $r = \frac{1}{4}$ for stability criteria.)